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Abstract

In this paper, we focus on the self-supervised learning of vi-
sual correspondence using unlabeled videos in the wild. Our
method simultaneously considers intra- and inter-video repre-
sentation associations for reliable correspondence estimation.
The intra-video learning transforms the image contents across
frames within a single video via the frame pair-wise affinity.
To obtain the discriminative representation for instance-level
separation, we go beyond the intra-video analysis and con-
struct the inter-video affinity to facilitate the contrastive trans-
formation across different videos. By forcing the transfor-
mation consistency between intra- and inter-video levels, the
fine-grained correspondence associations are well preserved
and the instance-level feature discrimination is effectively re-
inforced. Our simple framework outperforms the recent self-
supervised correspondence methods on a range of visual tasks
including video object tracking (VOT), video object segmen-
tation (VOS), pose keypoint tracking, etc. It is worth men-
tioning that our method also surpasses the fully-supervised
affinity representation (e.g., ResNet) and performs competi-
tively against the recent fully-supervised algorithms designed
for the specific tasks (e.g., VOT and VOS).

1 Introduction
Learning representations for visual correspondence is a
long-standing problem in computer vision, which is closely
related to many vision tasks including video object tracking,
keypoint tracking, and optical flow estimation, etc. This task
is challenging due to the factors such as viewpoint change,
distractors, and background clutter.

Correspondence estimation generally requires human an-
notations for model training. Collecting dense annotations,
especially for large-scale datasets, requires costly human ef-
forts. To leverage the large volume of raw videos in the
wild, the recent advances focus on self-supervised corre-
spondence learning by exploring the inherent relationships
within the unlabeled videos. In (Wang, Jabri, and Efros
2019), the temporal cycle-consistency is utilized to self-
supervise the feature representation learning. To be spe-
cific, the correct patch-level or pixel-wise associations be-
tween two successive frames should match bi-directionally
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Figure 1: The proposed approach targets at learning corre-
spondence using unlabeled videos. Previous works mainly
focus on the content transformation within each video clip.
Our framework simultaneously tracks (intra-video level) and
spreads (inter-video level) the feature embeddings to pre-
serve the fine-grained matching capability while encourag-
ing the contrastive embedding learning.

in both forward and backward tracking trajectories. The bi-
directional matching is realized via a frame-level affinity
matrix, which represents the pixel pair-wise similarity be-
tween two frames. In (Vondrick et al. 2018; Li et al. 2019),
this affinity is also utilized to achieve the content transfor-
mation between two frames for self-supervision. A straight-
forward transformation within videos is the color/RGB in-
formation. More specifically, the pixel colors in a target
frame can be “copied” (or transformed) from the pixels in
a reference frame. By minimizing the differences between
the transformed and the true colors of the target frame, the
backbone network is forced to learn robust feature embed-
dings for identifying correspondence across frames in a self-
supervised manner.

In spite of the impressive performance, existing unsuper-
vised correspondence algorithms put all the emphasis on
the intra-video analysis. Since the scenario in one video is
generally stable and changeless, establishing the correspon-
dence within the same videos is less challenging and in-
evitably hinders the discrimination potential of learned fea-
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ture embeddings. In this work, we go beyond the intra-video
correspondence learning by further considering the inter-
video level embedding separation of different instance ob-
jects. Our method is largely inspired by the recent success
of contrastive learning (He et al. 2020; Chen et al. 2020),
which aims at minimizing the agreement between different
augmented versions of the same image via a contrastive loss
(Hadsell, Chopra, and Lecun 2006). Nevertheless, there are
two obvious gaps between contrastive learning and corre-
spondence learning. First, classic contrastive learning relies
on the augmented still images, but how to adapt it to the
video-level correspondence scenario is rarely explored. Sec-
ond, their optimization goals are somewhat conflicting. Con-
trastive learning targets at positive concentration and nega-
tive separation, ignoring the pixel-to-pixel relevance among
the positive embeddings. In contrast, correspondence learn-
ing aims at identifying fine-grained matching.

In this work, we aim to narrow the above domain gaps
by absorbing the core contrastive ideas for correspondence
estimation. To transfer the contrastive learning from the im-
age domain to the video domain, we leverage the patch-
level tracking to acquire matched image pairs in unlabeled
videos. Consequently, our method captures the real target
appearance changes reside in the video sequences without
augmenting the still images using empirical rules (e.g., scal-
ing and rotation). Furthermore, we propose the inter-video
transformation, which is consistent with the correspondence
learning in terms of the optimization goal while preserving
the contrastive characteristic among different instance em-
beddings. In our framework, similar to previous arts (Von-
drick et al. 2018; Li et al. 2019), the image pixels should
match their counterpart pixels in the current video to satisfy
the self-supervision. Besides, these pixels are also forced to
mismatch the pixels in other videos to reinforce the instance-
level discrimination, which is formulated in the contrastive
transformation across a batch of videos, as shown in Fig-
ure 1. By virtue of the intra-inter transformation consistency
as well as the sparsity constraint for the inter-video affinity,
our framework encourages the contrastive embedding learn-
ing within the correspondence framework.

In summary, the main contribution of this work lies in the
contrastive framework for self-supervised correspondence
learning. 1) By joint unsupervised tracking and contrastive
transformation, our approach extends the classic contrastive
idea to the temporal domain. 2) To bridge the domain gap
between two diverse tasks, we propose the intra-inter trans-
formation consistency, which differs from contrastive learn-
ing but absorbs its core motivation for correspondence tasks.
3) Last but not least, we verify the proposed approach in a
series of correspondence-related tasks including video ob-
ject segmentation, pose tracking, object tracking, etc. Our
approach consistently outperforms previous state-of-the-art
self-supervised approaches and is even comparable with
some task-specific fully-supervised algorithms.

2 Related Work
In this section, we briefly review the related methods includ-
ing unsupervised representation learning, self-supervised
correspondence learning, and contrastive learning.

Unsupervised Representation Learning. Learning repre-
sentations from unlabeled images or videos has been widely
studied. Unsupervised approaches explore the inherent in-
formation inside images or videos as the supervisory sig-
nals from different perspectives, such as frame sorting (Lee
et al. 2017), image content recovering (Pathak et al. 2016),
deep clustering (Caron et al. 2018), affinity diffusion (Huang
et al. 2020), motion modeling (Pathak et al. 2017; Tung et al.
2017), and bi-directional flow estimation (Meister, Hur, and
Roth 2018). These methods learn an unsupervised feature
extractor, which can be generalized to different tasks by fur-
ther fine-tuning using a small set of labeled samples. In this
work, we focus on a sub-area in the unsupervised family,
i.e., learning features for fine-grained pixel matching with-
out task-specific fine-tuning. Our framework shares partial
insight with (Wang and Gupta 2015), which utilizes off-the-
shelf visual trackers for data pre-processing. Differently, we
jointly track and spread feature embeddings in an end-to-
end manner for complementary learning. Our method is also
motivated by the contrastive learning (Den Oord, Li, and
Vinyals 2018), another popular framework in the unsuper-
vised learning family. In the following, we will detailedly
discuss correspondence learning and contrastive learning.
Self-supervised Correspondence Learning. Learning tem-
poral correspondence is widely explored in the visual object
tracking (VOT), video object segmentation (VOS), and flow
estimation (Dosovitskiy et al. 2015) tasks. VOT aims to lo-
cate the target box in each frame based on the initial target
box, while VOS propagates the initial target mask. To avoid
expensive manual annotations, self-supervised approaches
have attracted increasing attention. In (Vondrick et al. 2018),
based on the frame-wise affinity, the pixel colors from the
reference frame are transferred to the target frame as self-
supervisory signals. Wang et al. (Wang, Jabri, and Efros
2019) conduct the forward-backward tracking in unlabeled
videos and leverage the inconsistency between the start and
end points to optimize the feature representation. UDT al-
gorithm (Wang et al. 2019) leverages a similar bi-directional
tracking idea and composes the correlation filter for unsuper-
vised tracker training. In (Yang, Zhang, and Zhang 2019), an
unsupervised tracker is trained via incremental learning us-
ing a single movie. Recently, Li el al. (Li et al. 2019) com-
bine the object-level and fine-grained correspondence in a
coarse-to-fine fashion and shows notable performance im-
provements. In (Jabri, Owens, and Efros 2020), space-time
correspondence learning is formulated as a contrastive ran-
dom walk and shows impressive results. Despite the success
of the above methods, they put the main emphasis on the
intra-video self-supervision. Our approach takes a step fur-
ther by simultaneously exploiting the intra-video and inter-
video consistency to learn more discriminative feature em-
beddings. Therefore, previous intra-video based approaches
can be regarded as one part of our framework.
Contrastive Learning. Contrastive learning is a popular un-
supervised learning paradigm, which aims to enlarge the em-
bedding disagreements of different instances for represen-
tation learning (Den Oord, Li, and Vinyals 2018; Ye et al.
2019; Hjelm et al. 2019). Based on the contrastive frame-
work, the recent SimCLR method (Chen et al. 2020) signifi-
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Figure 2: An overview of the proposed framework. Given a batch of videos, we first do patch-level tracking to generate image
pairs. Then, intra- and inter-video transformations are conducted for each video in the mini-batch. Finally, except the intra-video
self-supervision, we introduce the intra-inter consistency and sparsity constraint to reinforce the embedding discrimination.

cantly narrows the performance gap between supervised and
unsupervised models. He et al. (He et al. 2020) propose the
MoCo algorithm to fully exploit the negative samples in the
memory bank. Inspired by the recent success of contrastive
learning, we also involve plentiful negative samples for dis-
criminative feature learning. Compared with existing con-
trastive methods, one major difference is our method jointly
tracks and spreads feature embeddings in the video domain.
Therefore, our method captures the temporally changed ap-
pearance variations instead of manually augmenting the still
images. Besides, instead of using a standard contrastive loss
(Hadsell, Chopra, and Lecun 2006), we incorporate the con-
trastive idea into the correspondence task by a conceptually
simple yet effective contrastive transformation mechanism
to narrow the domain gap.

3 Methodology
An overview of our framework is shown in Figure 2. Given
a batch of videos, we first crop the adjacent image patches
via patch-level tracking, which ensures the image pairs have
similar contents and facilitates the later transformations. For
each image pair, we consider the intra-video bi-directional
transformation. Furthermore, we introduce irrelevant images
from other videos to conduct the inter-video transformation
for contrastive embedding learning. The final training ob-
jectives include the intra-video self-supervision, intra-inter
transformation consistency, and sparsity regularization for
the batch-level affinity.

3.1 Revisiting Affinity-based Transformation
Given a pair of video frames, the pixel colors (e.g., RGB val-
ues) in one frame can be copied from the pixels from another
frame. This is based on the assumption that the contents in
two successive video frames are coherent. The above frame
reconstruction (pixel copy) operation can be expressed via a
linear transformation with the affinity matrix Ar→t, which
describes the copy process from a reference frame to a target
frame (Vondrick et al. 2018; Liu et al. 2018).

A general option for the similarity measurement in the
affinity matrix is the dot product between feature embed-
dings. In this work, we follow previous arts (Vondrick et al.

2018; Wang, Jabri, and Efros 2019; Li et al. 2019) to con-
struct the following affinity matrix:

Ar→t(i, j) =
exp

(
ft(i)

>
fr(j)

)
∑

j exp
(
ft(i)

>
fr(j)

) , (1)

where ft ∈ RC×N1 and fr ∈ RC×N2 denote flattened fea-
ture maps with C channels of target and reference frames,
respectively. With the spatial index i ∈ [1, N1] and j ∈
[1, N2], Ar→t ∈ RN1×N2 is normalized by the softmax over
the spatial dimension of fr.

Leveraging the above affinity, we can freely transform
various information from the reference frame to the target
frame by L̂t = Ar→tLr, where Lr can be any associated la-
bels of the reference frame (e.g., semantic mask, pixel color,
and pixel location). Since we naturally know the color infor-
mation of the target frame, one free self-supervisory signal
is color (Vondrick et al. 2018). The goal of such an affinity-
based transformation framework is to train a good feature
extractor for affinity computation.

3.2 Contrastive Pair Generation
A vital step in contrastive frameworks is building positive
image pairs via data augmentation. We free this necessity
by exploring the temporal content consistency resides in the
videos. To this end, for each video, we first utilize the patch-
level tracking to acquire a pair of high-quality image patches
with similar content. Based on the matched pairs, we then
conduct the contrastive transformation.

Given a randomly cropped patch in the reference frame,
we aim to localize the best matched patch in the target frame,
as shown in Figure 2. Similar to Eq. 1, we compute a patch-
to-frame affinity between the features of a random patch
in the reference frame and the features of the whole target
frame. Based on this affinity, in the target frame, we can
identify some target pixels most similar to the reference pix-
els, and average these pixel coordinates as the tracked target
center. We also estimate the patch scale variation following
UVC approach (Li et al. 2019). Then we crop this patch and
combine it with the reference patch to form an image pair.



3.3 Intra- and Inter-video Transformations
Intra-video. After obtaining a pair of matched feature maps
via patch-level tracking, we compute their fined-grained
affinity Ar→t according to Eq. 1. Based on this intra-video
affinity, we can easily transform the image contents from the
reference patch to the target patch within a single video clip.

Inter-video. The key success of the aforementioned affinity-
based transformation lies in the embedding discrimination
among plentiful subpixels to achieve the accurate label copy.
Nevertheless, within a pair of small patch regions, the image
contents are highly correlated and even only cover a subre-
gion of a large object, struggling to contain diverse visual
patterns. The rarely existing negative pixels from other in-
stance objects heavily hinder the embedding learning.

In the following, we improve the existing framework by
introducing another inter-video transformation to achieve
the contrastive embedding learning. The inter-video affinity
is defined as follows:

ArΣ→t(i, j) =
exp

(
ft(i)

>
fΣ
r (j)

)
∑

j exp
(
ft(i)

>
fΣ
r (j)

) , (2)

where fΣ
r is the concatenation of the reference features

from different videos in the spatial dimension, i.e., fΣ
r =

Concat(f1
r , · · · , fnr ). For a mini-batch with n videos, the

spatial index i ∈ [1, N1] and j ∈ [1, nN2].

Rationale Analysis. Inter-video transformation is an exten-
sion of intra-video transformation. By decomposing the ref-
erence feature embeddings fΣ

r ∈ RC×nN2 into positive and
negative, fΣ

r can be expressed as fΣ
r = Concat(f+

r , f−r ),
where f+

r ∈ RC×N2 denotes the only positive reference
feature related to the target frame feature while f−r ∈
RC×(n−1)N2 is the concatenation of negative ones from un-
related videos in the mini-batch. As a result, the computed
affinity ArΣ→t ∈ RN1×nN2 can be regarded as an ensemble
of multiple sub-affinities, as shown in Figure 3. Our goal is
to build such a batch-level affinity for discriminative repre-
sentation learning.

To facilitate the later descriptions, we also divide the inter-
video affinity ArΣ→t as a combination of positive and neg-
ative sub-affinities:

ArΣ→t = Concat(Ar+→t,Ar−→t), (3)

where Ar+→t ∈ RN1×N2 and Ar−→t ∈ RN1×(n−1)N2 are
the positive and negative sub-affinities, respectively. Ideally,
sub-affinity Ar+→t should be close to the intra-video affin-
ity and Ar−→t is expected to be a zero-like matrix. Never-
theless, with the inclusion of noisy reference features f−r ,
the positive sub-affinity Ar+→t inevitably degenerates in
comparison with the intra-video affinity Ar→t, as shown in
Figure 3. In the following, we present the intra-inter trans-
formation consistency to encourage contrastive embedding
learning within the correspondence learning task.

3.4 Training Objectives
To achieve the high-quality frame reconstruction, following
(Li et al. 2019), we pre-train an encoder and a decoder using
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Figure 3: Comparison between intra-video affinity (top) and
inter-video affinity (bottom). Best view in zoom in.

still images on the COCO dataset (Lin et al. 2014) to per-
form the feature-level transformation. The pre-trained en-
coder and decoder networks are frozen without further opti-
mization in our framework. The goal is to train the backbone
network for correspondence estimation (i.e., affinity compu-
tation). In the following, the encoded features of the refer-
ence image Ir is denoted as Er = Encoder(Ir).

Intra-video Self-supervision. Leveraging the intra-video
affinity Ar→t as well as the encoded reference feature Er,
the transformed target image can be computed via Îr→t =
Decoder(Ar→tEr). Ideally, the transformed target frame
should be consistent with the original target frame. As a con-
sequence, the intra-video self-supervisory loss is defined as
follows:

Lself = ‖Îr→t − It‖1. (4)

Intra-inter Consistency. Leveraging the inter-video affin-
ity ArΣ→t and the encoded reference features EΣ

r from a
batch of videos, i.e., EΣ

r = Concat(E1
r, · · · ,En

r ), the cor-
responding transformed target image can be computed via
ÎrΣ→t = Decoder(ArΣ→tE

Σ
r ). This inter-video transfor-

mation is shown in Figure 4. The reference features from
other videos are considered as negative embeddings. The
learned inter-video affinity is expected to exclude unrelated
embeddings for transformation fidelity. Therefore, the trans-
formed images via intra-video affinity and inter-video affin-
ity should be consistent:

Lintra-inter = ‖Îr→t − ÎrΣ→t‖1. (5)

The above loss encourages both positive feature invariance
and negative embedding separation.

Sparsity Constraint. To further enlarge the disagreements
among different video features, we force the sub-affinity in
the inter-video affinity ArΣ→t to be sparse via

Lsparse = ‖Ar−→t‖1, (6)

where Ar−→t is the negative sub-affinity in Eq. 3.

Other Regularizations. Following previous works (Li et al.
2019; Wang, Jabri, and Efros 2019), we also utilize the
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Figure 4: Illustration of the inter-video transformation.

cycle-consistency (bi-directional matching) between two
frames, which equals forcing the affinity matrix to be orthog-
onal, i.e., A−1

r→t = At→r. Besides, the concentration regu-
larization proposed in (Li et al. 2019) is also added. These
two regularizations are combined and denoted as Lothers.
Final Objective. The final training objective is the combi-
nation of the above loss functions:

Lfinal = Lself + Lintra-inter + Lsparse + Lothers. (7)
Our designed losses Lintra-inter and Lsparse are equally incor-
porated with the basic objective Lself. An overview of the
training process is shown in Algorithm 1.

3.5 Online Inference
After offline training, the pretrained backbone model is fixed
during the inference stage, which is utilized to compute the
affinity matrix for label transformation (e.g., segmentation
mask). Note that the contrastive transformation is merely
utilized for offline training, and the inference process is sim-
ilar to the intra-video transformation. To acquire more re-
liable correspondence, we further design a mutually corre-
lated affinity to exclude noisy matching as follows:

Ãr→t(i, j) =
exp

(
w(i, j)ft(i)

>
fr(j)

)
∑

j exp
(
w(i, j)ft(i)

>
fr(j)

) , (8)

where w(i, j) ∈ [0, 1] is a mutual correlation weight be-
tween two frames. Ideally, we prefer the one-to-one match-
ing, i.e., one pixel in the reference frame should be highly
correlated with some pixel in the target frame and vice versa.
The mutual correlation weight is formulated by:

w(i, j) =
ft(i)

>
fr(j)

max
i∈[1,N1]

(
ft(i)

>
fr(j)

) × ft(i)
>
fr(j)

max
j∈[1,N2]

(
ft(i)

>
fr(j)

) .
(9)

The weight w can be regarded as the affinity normalization
across both reference and target spatial dimensions. Given
the above affinity between two frames, the target frame label
L̂t can be transformed via L̂t = Ãr→tLr.

4 Experiments
We verify the effectiveness of our method on a variety of vi-
sion tasks including video object segmentation, visual object
tracking, pose keypoint tracking, and human parts segmen-
tation propagation1.

1The source code and pretrained model will be available at
https://github.com/594422814/ContrastCorr

Algorithm 1: Offline Training Process
Input: Unlabeled video sequences.
Output: Trained weights for the backbone network.

1 for each mini-batch do
2 Extract deep features of the video frames;
3 Patch-level tracking to obtain matched feature pairs;
4 for each video in the mini-batch do
5 // Intra- and Inter-video transformations

6 Compute intra-video affinity Ar→t (Eq. 1);
7 Compute inter-video affinity ArΣ→t (Eq. 3);
8 Conduct intra- and inter-video transformations;
9 // Loss Computation

10 Compute intra-video self-supervision Lself;
11 Compute intra-inter consistency Lintra-inter;
12 Compute regularization terms Lsparse and Lothers;
13 end
14 Back-propagate all the losses in this mini-batch;
15 end

4.1 Experimental Details
Training Details. In our method, the patch-level track-
ing and frame transformations share a ResNet-18 backbone
network (He et al. 2016) with the first 4 blocks for fea-
ture extraction. The training dataset is TrackingNet (Müller
et al. 2018) with about 30k video. Note that previous works
(Wang, Jabri, and Efros 2019; Li et al. 2019) use the Kinet-
ics dataset (Zisserman et al. 2017), which is much larger in
scale than TrackingNet. Our framework randomly crops and
tracks the patches of 256×256 pixels (i.e., patch-level track-
ing), and further yields a 32×32 intra-video affinity (i.e.,
the network stride is 8). The batch size is 16. Therefore,
each positive embedding contrasts with 15×(32×32×2) =
30720 negative embeddings. Since our method considers
pixel-level features, a small batch size also involves abun-
dant contrastive samples. We first train the intra-video trans-
formation (warm-up stage) for the first 100 epochs and then
train the whole framework in an end-to-end manner for an-
other 100 epochs. The learning rate of both two stages is
1 × 10−4 and will be reduced by half every 40 epochs. The
training stage takes about one day on 4 Nvidia 1080Ti GPUs.
Inference Details. For a fair comparison, we use the same
testing protocols as previous works (Wang, Jabri, and Efros
2019; Li et al. 2019) in all tasks.

4.2 Framework Effectiveness Study
In Table 1, we show ablative experiments of our method on
the DAVIS-2017 validation dataset (Ponttuset et al. 2017).
The evaluation metrics are Jacaard index J and contour-
based accuracy F . As shown in Table 1, without the intra-
video guidance, inter-video transformation alone for self-
supervision yields unsatisfactory results due to overwhelm-
ing noisy/negative samples. With only intra-video transfor-
mation, our framework is similar to the previous approach
(Li et al. 2019). By jointly employing both of these two
transformations under an intra-inter consistency constraint,
our method obtains obvious performance improvements of
3.2% in J and 3.4% in F . The sparsity term of inter-video
affinity encourages the embedding separation and further

https://github.com/594422814/ContrastCorr


Intra-video Inter-video Sparsity Mutual J (Mean) F (Mean)
Transformation Transformation Constraint Correlation
Lself + Lothers Lintra-inter Lsparse

X 55.8 60.3
X X 59.0 63.7
X X X 59.2 64.0
X X X X 60.5 65.5

Table 1: Analysis of each component of our method on the
DAVIS-2017 validation dataset.

(a)

(b)

(c)

Figure 5: (a) Ground-truth results. (b) Results of the model
with both intra- and inter-video transformations. (c) Results
of the model without inter-video contrastive transformation,
where the failures are highlighted by white circles.

improves the results.
In Figure 9, we further visualize the comparison results

of our method with and without contrastive transformation.
As shown in the last row of Figure 9, only intra-video self-
supervision fails to effectively handle the challenging sce-
narios with distracting objects and partial occlusion. By in-
volving the contrastive transformation, the learned feature
embeddings exhibit superior discrimination capability for
instance-level separation.

4.3 Comparison with State-of-the-art Methods
Video Object Segmentation on the DAVIS-2017. DAVIS
(Ponttuset et al. 2017) is a video object segmentation (VOS)
benchmark. We evaluate our method on the DAVIS-2017
validation set following Jacaard index J (IoU) and contour-
based accuracy F . Table 2 lists quantitative results. Our
model performs favorably against the state-of-the-art self-
supervised methods including Time-Cycle (Wang, Jabri, and
Efros 2019), CorrFlow (Lai and Xie 2019), and UVC (Li
et al. 2019). Specifically, with the same experimental set-
tings (e.g., frame input size and recurrent reference strat-
egy), our model surpasses the recent top-performing UVC
approach by 3.8% in J and 4.8% in F . The recent MAST
approach (Lai, Lu, and Xie 2020) obtains impressive results
by leveraging a memory mechanism, which can be added to
our framework for further performance improvement. From
Figure 8 (first row), we can observe that our method is robust
in handling distracting objects and partial occlusion.

Compared with the fully-supervised ResNet-18 network
trained on ImageNet with classification labels, our method
exhibits much better performance. It is also worth noting
that our method even surpasses the recent fully-supervised

Model Supervised J (Mean) F (Mean)

Transitive Inv. (Wang, He, and Gupta 2017) 32.0 26.8
DeepCluster (Caron et al. 2018) 37.5 33.2
Video Colorization (Vondrick et al. 2018) 34.6 32.7
Time-Cycle (Wang, Jabri, and Efros 2019) 41.9 39.4
CorrFlow (Lai and Xie 2019) 48.4 52.2
UVC (480p) (Li et al. 2019) 56.3 59.2
UVC (560p) (Li et al. 2019) 56.7 60.7
MAST (Lai, Lu, and Xie 2020) 63.3 67.6
ContrastCorr (Ours) 60.5 65.5
ResNet-18 (He et al. 2016) X 49.4 55.1
OSVOS (Caelles et al. 2017) X 56.6 63.9
FEEVOS (Voigtlaender et al. 2019) X 69.1 74.0

Table 2: Evaluation on video object segmentation on the
DAVIS-2017 validation dataset. The evaluation metrics are
region similarity J and contour-based accuracy F .

Model Supervised DP@20pixel AUC

KCF (HOG feature) (Henriques et al. 2015) 69.6 48.5
UL-DCFNet (Yang, Zhang, and Zhang 2019) 75.5 58.4
UDT (Wang et al. 2019) 76.0 59.4
UVC (Li et al. 2019) - 59.2
LUDT (Wang et al. 2020) 76.9 60.2
ContrastCorr (Ours) 77.2 61.1
ResNet-18 + DCF (He et al. 2016) X 49.4 55.6
SiamFC (Bertinetto et al. 2016) X 77.1 58.2
DiMP-18 (Bhat et al. 2019) X 87.1 66.2

Table 3: Evaluation on video object tracking on the OTB-
2015 dataset. The evaluation metrics are distance precision
(DP) and area-under-curve (AUC) score of the success plot.

methods such as OSVOS.
Video Object Tracking on the OTB-2015. OTB-2015 (Wu,
Lim, and Yang 2015) is a visual tracking benchmark with
100 challenging videos. We evaluate our method on OTB-
2015 under distance precision (DP) and area-under-curve
(AUC) metrics. Our model learns robust feature representa-
tions for fine-grained matching, which can be combined with
the correlation filter (Henriques et al. 2015; Danelljan et al.
2014) for robust tracking. Without online fine-tuning, we in-
tegrate our model into a classic tracking framework based on
the correlation filter, i.e., DCFNet (Wang et al. 2017). The
comparison results are shown in Table 3. Note that UDT
(Wang et al. 2019) is the recently proposed unsupervised
tracker trained with the correlation filter in an end-to-end
manner. Without end-to-end optimization, our model is still
robust enough to achieve superior performance in compar-
ison with UDT. Our method also outperforms the classic
fully-supervised trackers such as SiamFC. As shown in Fig-
ure 8 (second row), our model can well handle the motion
blur, deformation, and similar distractors.
Pose Keypoint Propagation on the J-HMDB. We evalu-
ate our model on the pose keypoint propagation task on the
validation set of J-HMDB (Jhuang et al. 2013). Pose key-
point tracking requires precise fine-grained matching, which
is more challenging than the box-level or mask-level prop-
agation in the VOT/VOS tasks. Given the initial frame with
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Figure 6: Experimental results of our method. (a) Video object segmentation on the DAVIS-2017. (b) Visual object tracking on
the OTB-2015. (c) Pose keypoint tracking on the J-HMDB. (d) Parts segmentation propagation on the VIP.

Model Supervised PCK@.1 PCK@.2

SIFT Flow (Liu, Yuen, and Torralba 2011) 49.0 68.6
Transitive Inv. (Wang, He, and Gupta 2017) 43.9 67.0
DeepCluster (Caron et al. 2018) 43.2 66.9
Video Colorization (Vondrick et al. 2018) 45.2 69.6
Time-Cycle (Wang, Jabri, and Efros 2019) 57.3 78.1
CorrFlow (Lai and Xie 2019) 58.5 78.8
UVC (Li et al. 2019) 58.6 79.8
ContrastCorr (Ours) 61.1 80.8
ResNet-18 (He et al. 2016) X 53.8 74.6
Thin-Slicing Network (Song et al. 2017) X 68.7 92.1

Table 4: Keypoints propagation on J-HMDB. The evaluation
metric is PCK at different thresholds.

15 annotated human keypoints, we propagate them in the
successive frames. The evaluate metric is the probability
of correct keypoint (PCK), which measures the percentage
of keypoints close to the ground-truth in different thresh-
olds. We show comparison results against the state-of-the-art
methods in Table 4 and qualitative results in Figure 8 (third
row). Our method outperforms all previous self-supervised
methods such as Time-Cycle, CorrFlow, and UVC (Table 4).
Furthermore, our approach significantly outperforms pre-
trained ResNet-18 with ImageNet supervision.
Semantic and Instance Propagation on the VIP. Finally,
we evaluate our method on the Video Instance-level Pars-
ing (VIP) dataset (Zhou et al. 2018), which includes dense
human parts segmentation masks on both the semantic and
instance levels. We conduct two tasks in this benchmark:
semantic propagation and human part propagation with in-
stance identity. For the semantic mask propagation, we prop-
agate the semantic segmentation maps of human parts (e.g.,
heads, arms, and legs) and evaluate performance via the
mean IoU metric. For the part instance propagation task, we
propagate the instance-level segmentation of human parts
(e.g., different arms of different persons) and evaluate per-
formance via the instance-level human parsing metric: mean
Average Precision (AP). Table 5 shows that our method per-

Model Supervised mIoU APr
vol

SIFT Flow (Liu, Yuen, and Torralba 2011) 21.3 10.5
Transitive Inv. (Wang, He, and Gupta 2017) 19.4 5.0
DeepCluster (Caron et al. 2018) 21.8 8.1
Time-Cycle (Wang, Jabri, and Efros 2019) 28.9 15.6
UVC (Li et al. 2019) 34.1 17.7
ContrastCorr (Ours) 37.4 21.6
ResNet-18 (He et al. 2016) X 31.8 12.6
FGFA (Zhu et al. 2017) X 37.5 23.0
ATEN (Zhou et al. 2018) X 37.9 24.1

Table 5: Evaluation on propagating human part labels in
Video Instance-level Parsing (VIP) dataset. The evaluation
metrics are semantic propagation with mIoU and part in-
stance propagation in APr

vol.

forms favorably against previous self-supervised methods.
For example, our approach outperforms the previous best
self-supervised method UVC by 3.3% mIoU in semantic
propagation and 3.9% in human part propagation. Besides,
our model notably surpasses the ResNet-18 model trained
on ImageNet with classification labels. Finally, our method
is comparable with the fully-supervised ATEN algorithm
(Zhou et al. 2018) designed for this dataset.

5 Conclusion
In this work, we focus on the correspondence learning us-
ing unlabeled videos. Based on the well-studied intra-video
self-supervision, we go one step further by introducing the
inter-video transformation to achieve contrastive embedding
learning. The proposed contrastive transformation encour-
ages embedding discrimination while preserving the fine-
grained matching characteristic among positive embeddings.
Without task-specific fine-tuning, our unsupervised model
shows satisfactory generalization on a variety of tempo-
ral correspondence tasks. Our approach consistently outper-
forms previous self-supervised methods and is even compa-
rable with the recent fully-supervised algorithms.
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Danelljan, M.; Häger, G.; Khan, F.; and Felsberg, M. 2014.
Accurate scale estimation for robust visual tracking. In
BMVC.
Den Oord, A. V.; Li, Y.; and Vinyals, O. 2018. Represen-
tation learning with contrastive predictive coding. arXiv:
1807.03748 .
Dosovitskiy, A.; Fischery, P.; Ilg, E.; Hausser, P.; Hazirbas,
C.; Golkov, V.; Der Smagt, P. V.; Cremers, D.; and Brox,
T. 2015. Flownet: learning optical flow with convolutional
networks. In ICCV.
Hadsell, R.; Chopra, S.; and Lecun, Y. 2006. Dimensionality
reduction by learning an invariant mapping. In CVPR.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In CVPR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Henriques, J. F.; Caseiro, R.; Martins, P.; and Batista, J.
2015. High-speed tracking with kernelized correlation fil-
ters. TPAMI 37(3): 583–596.
Hjelm, R. D.; Fedorov, A.; Lavoiemarchildon, S.; Grewal,
K.; Bachman, P.; Trischler, A.; and Bengio, Y. 2019. Learn-
ing deep representations by mutual information estimation
and maximization. In ICLR.
Huang, J.; Dong, Q.; Gong, S.; and Zhu, X. 2020. Unsuper-
vised Deep Learning via Affinity Diffusion. In AAAI.
Jabri, A.; Owens, A.; and Efros, A. 2020. Space-time corre-
spondence as a contrastive random walk. In NeurIPS.
Jhuang, H.; Gall, J.; Zuffi, S.; Schmid, C.; and Black, M. J.
2013. Towards understanding action recognition. In ICCV.

Lai, Z.; Lu, E.; and Xie, W. 2020. MAST: A Memory-
Augmented Self-Supervised Tracker. In CVPR.
Lai, Z.; and Xie, W. 2019. Self-supervised learning for video
correspondence flow. In BMVC.
Lee, H.-Y.; Huang, J.-B.; Singh, M.; and Yang, M.-H. 2017.
Unsupervised representation learning by sorting sequences.
In ICCV.
Li, X.; Liu, S.; De Mello, S.; Wang, X.; Kautz, J.; and Yang,
M.-H. 2019. Joint-task self-supervised learning for temporal
correspondence. In NeurIPS.
Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft
coco: common objects in context. In ECCV.
Liu, C.; Yuen, J.; and Torralba, A. 2011. Sift flow: dense
correspondence across scenes and its applications. TPAMI
33(5): 978–994.
Liu, S.; Zhong, G.; De Mello, S.; Gu, J.; Jampani, V.; Yang,
M.; and Kautz, J. 2018. Switchable temporal propagation
network. In ECCV.
Meister, S.; Hur, J.; and Roth, S. 2018. Unflow: Unsuper-
vised learning of optical flow with a bidirectional census
loss. In AAAI.
Müller, M.; Bibi, A.; Giancola, S.; Al-Subaihi, S.; and
Ghanem, B. 2018. Trackingnet: a large-scale dataset and
benchmark for object tracking in the wild. In ECCV.
Pathak, D.; Girshick, R.; Dollar, P.; Darrell, T.; and Hariha-
ran, B. 2017. Learning Features by Watching Objects Move.
In CVPR.
Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context encoders: feature learning by
inpainting. In CVPR.
Ponttuset, J.; Perazzi, F.; Caelles, S.; Arbelaez, P.; Sorkine-
hornung, A.; and Van Gool, L. 2017. The 2017 davis chal-
lenge on video object segmentation. arXiv: 1704.00675 .
Song, J.; Wang, L.; Van Gool, L.; and Hilliges, O. 2017.
Thin-slicing network: a deep structured model for pose esti-
mation in videos. In CVPR.
Tung, H. F.; Tung, H.; Yumer, E.; and Fragkiadaki, K. 2017.
Self-supervised learning of motion capture. In NeurIPS.
Voigtlaender, P.; Chai, Y.; Schroff, F.; Adam, H.; Leibe, B.;
and Chen, L. 2019. Feelvos: fast end-to-end embedding
learning for video object segmentation. In CVPR.
Vondrick, C.; Shrivastava, A.; Fathi, A.; Guadarrama, S.;
and Murphy, K. 2018. Tracking emerges by colorizing
videos. In ECCV.
Wang, N.; Song, Y.; Ma, C.; Zhou, W.; Liu, W.; and Li, H.
2019. Unsupervised deep tracking. In CVPR.
Wang, N.; Zhou, W.; Song, Y.; Ma, C.; Liu, W.; and Li, H.
2020. Unsupervised deep representation learning for real-
time tracking. IJCV 1–19.
Wang, Q.; Gao, J.; Xing, J.; Zhang, M.; and Hu, W. 2017.
Dcfnet: discriminant correlation filters network for visual
tracking. arXiv:1704.04057 .



Wang, X.; and Gupta, A. 2015. Unsupervised learning of
visual representations using videos. In ICCV.
Wang, X.; He, K.; and Gupta, A. 2017. Transitive invariance
for self-supervised visual representation learning. In ICCV.
Wang, X.; Jabri, A.; and Efros, A. A. 2019. Learning corre-
spondence from the cycle-consistency of time. In CVPR.
Wu, Y.; Lim, J.; and Yang, M.-H. 2015. Object tracking
benchmark. TPAMI 37(9): 1834–1848.
Yang, L.; Zhang, D.; and Zhang, L. 2019. Learning a visual
tracker from a single movie without annotation. In AAAI.
Ye, M.; Zhang, X.; Yuen, P. C.; and Chang, S. 2019. Un-
supervised embedding learning via invariant and spreading
instance feature. In CVPR.
Zhou, Q.; Liang, X.; Gong, K.; and Lin, L. 2018. Adaptive
temporal encoding network for video instance-level human
parsing. In ACM MM.
Zhu, X.; Wang, Y.; Dai, J.; Yuan, L.; and Wei, Y. 2017. Flow-
guided feature aggregation for video object detection. In
CVPR.
Zisserman, A.; Carreira, J.; Simonyan, K.; Kay, W.; Zhang,
B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.
F. G.; Back, T.; et al. 2017. The kinetics human action video
dataset. arXiv: 1705.06950 .

A Inference Details
In the inference stage, we leverage the computed affinity ma-
trix to transform different types of inputs, e.g., segmentation
masks and pose keypoints. Similar to Time-Cycle and UVC,
we adopt the same recurrent inference strategy to propagate
the ground-truth result from the first frame, as well as the
predicted results from the preceding L frames onto the tar-
get frame. We average all L + 1 predictions to obtain the
final propagated map. Following previous works, L is set to
1 for the VIP dataset and 7 for all the rest benchmarks. For
fair comparisons, following Time-Cycle and UVC, we also
use the k-NN propagation schema and set k = 5 for all tasks.
More details can be found in the source code.

B Transformation Results
In Figure 7, we exhibit some examples of our tracked image
pairs. In our framework, we first randomly crop a reference
patch in the reference frame and then conduct the patch-level
tracking to form a pair of matched images. As shown in Fig-
ure 7, the image pairs have similar contents, which facilitate
further intra- and inter-video transformations. Thanks to the
patch-level tracking, our image pairs contain the real target
appearance changes (e.g., person view/pose changes), which
differs from conventional contrastive methods based on the
manually designed rules (e.g., flip and rotation) to form im-
age pairs.

In Figure 7, we also show the inter-video transformation
results of our approach. The transformed images yield al-
most identical contents in comparison with the target patch,
which affirms that our affinity matrix achieves reliable cor-
respondence matching.

C Additional VOS Results
In Figure 8, we show more results of our approach on the
DAVIS-2017 validation dataset. From Figure 8, we can ob-
serve that our method is able to accurately propagate the seg-
mentation masks in challenging scenarios.

UVC algorithm represents the current state-of-the-art
self-supervised correspondence approach based on the intra-
video transformation paradigm. In contrast, our method fur-
ther exploits the inter-video level transformation to reinforce
instance-level embedding discrimination. In Figure 9, we
further compare our approach with UVC. As shown in Fig-
ure 9, compared with UVC, our approach better handles the
challenging scenarios such as occlusion, deformation, and
similar distractors.
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Figure 7: Examples of our tracked image pairs and transformed patches.

Figure 8: More results on the DAVIS-2017 validation dataset.
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Figure 9: (a) Ground-truth segmentation results. (b) Results of UVC, which represents the current state-of-the-art performance
of self-supervised correspondence methods. (c) Our results. By virtue of contrastive transformation, our approach shows supe-
rior results in comparison with previous intra-video based methods.
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