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Abstract— In visual tracking, how to effectively model the
target appearance using limited prior information remains an
open problem. In this paper, we leverage an ensemble of
diverse models to learn manifold representations for robust
object tracking. The proposed ensemble framework includes a
shared backbone network for efficient feature extraction and
multiple head networks for independent predictions. Trained
by the shared data within an identical structure, the mutually
correlated head models heavily hinder the potential of ensemble
learning. To shrink the representational overlaps among multiple
models while encouraging the diversity of individual predic-
tions, we propose the model diversity and response diversity
regularization terms during training. By fusing these distinctive
prediction results via a fusion module, the tracking variance
caused by the distractor objects can be largely restrained. Our
whole framework is end-to-end trained in a data-driven manner,
avoiding the heuristic designs of multiple base models and fusion
strategies. The proposed method achieves state-of-the-art results
on seven challenging benchmarks while operating in real-time.

Index Terms— Visual tracking, ensemble learning, end-to-end
tracker, diverse models.

I. INTRODUCTION

V ISUAL object tracking is a fundamental task in computer
vision with various applications such as human-computer

interaction, autonomous driving, and video surveillance [1].
Given the initial ground-truth annotation, tracking algorithms
are required to consistently localize the target and cope with
various challenging factors such as target occlusion, viewpoint
change, and deformation. Despite the rapid progress in the
past decades, how to effectively model the target appearance
for robust visual tracking still remains a challenging problem.

A single tracker generally struggles to comprehensively
model the target appearance and suffers from the occlusal drift.
In the tracking process, unfortunately, accidental prediction
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biases will be gradually accumulated and lead to the unre-
coverable failure. To alleviate the limitation of single models,
a natural way is to assemble multiple trackers with diversified
capabilities for cooperation. It has been well recognized that
by reasonably fusing the results from different models, the
tracking variance can be largely reduced. In a satisfying
ensemble tracking framework, the following aspects are of
vital importance: model diversity, fusion strategy, and tracking
efficiency. Nevertheless, previous ensemble trackers mostly
ignore the balance of these factors to some extent. First, model
diversity guarantees the effectiveness of ensemble learning.
Even though the previous ensemble approaches typically put
some emphasis on the model designing, how to effectively
enlarge the model diversity still leaves exploration room,
and most of them build diversified models in a heuristic
manner such as adopting different features [2]–[6], update
scheme [7], or training data [8]. Second, fusion strategy,
as another core component, has been widely investigated.
Nevertheless, a majority of existing fusion strategies are man-
ually designed with carefully tuned hyper-parameters [3], [5],
[6], [9], potentially restricting the algorithm generalization.
Finally, the online efficiency is also important since the
tracking task is tightly related to the practical vision scenarios.
However, by running multiple heavyweight trackers in par-
allel, some ensemble frameworks fail to achieve a real-time
speed [5], [10], [11].

In this paper, we focus on the ensemble tracking frame-
work to model diversified target representations on manifolds.
Considering the aforementioned requirements, we design an
end-to-end ensemble tracker consisting of a single backbone
and multiple head networks. The shared backbone network
extracts deep features once in each frame, greatly ensuring
online tracking efficiency. The multiple head networks model
the target appearance from manifold feature spaces, which
complement each other to reduce the tracking variance and
together contribute to a more robust tracking system. As
shown in Figure 1, different head models predict distinc-
tive results (e.g., confidence in discriminating distractors)
despite their same network structures and input features. To
further shrink the representational overlaps and encourage
the prediction diversity, we propose the model diversity and
response diversity regularizations in the training stage. The
model diversity encourages multiple head networks to learn
diversified discriminative models in the feature level, while
the response diversity regularization enlarges the differences

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 18,2021 at 06:48:46 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4937-6784
https://orcid.org/0000-0003-1690-9836
https://orcid.org/0000-0003-2188-3028


WANG et al.: LEARNING DIVERSE MODELS FOR END-TO-END ENSEMBLE TRACKING 2221

Fig. 1. Prediction results from different models in our ensemble framework.
The highest and second-highest peaks are highlighted by the red and black
circles, respectively. In the last column, we present the pair-wise similarity
(cosine distance) of different response maps. Different models yield distinctive
results, e.g., fine-grained target localizations and discrimination confidences
on the distractors. Best view in color and zoom in.

among individual predictions. Finally, by introducing a simple
yet effective fusion module, we dynamically integrate the
parallelly generated tracking results. Different from previ-
ous ensemble trackers with heuristic designs in both model
selection and fusion strategies, we free these requirements by
jointly optimizing the diverse models and fusion scheme in a
data-driven manner. It is also worth mentioning that compared
with our baseline approach [12], our ensemble framework
neither modifies the base network structure, nor leverages
additional training data, and nor introduces additional hyper-
parameters, while achieving superior performance with almost
the same real-time efficiency.

In summary, the main contributions of this work are three-
fold:

• We design an efficient ensemble tracking framework with
a single backbone and multiple head networks. We fur-
ther propose the model diversity and response diversity
regularizations to encourage the diversity in both feature
level and prediction level.

• As a small contribution, we introduce a response fusion
module to adaptively integrate the results from individual
models, facilitating the end-to-end training of the whole
framework.

• We conduct extensive experiments on seven challenging
benchmarks to validate the effectiveness of our approach.
On the large-scale tracking datasets such as LaSOT
[13], GOT-10k [14], and TrackingNet [15], our method
achieves outstanding results in comparison with previous
state-of-the-art trackers.

In the following of this paper, we describe the related work
in Section II, our baseline approach in Section III, the proposed
approach in Section IV, and experiments in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

A. Visual Tracking

Given the initial target state, visual tracking aims to pre-
dict the target localization in successive frames. In the past
decades, a variety of frameworks have been proposed in the
tracking community. The correlation filter (CF) based methods
[16], [17] solve the tracking task by ridge regression, which
show attractive efficiency thanks to the closed-form solution in

the Fourier domain. With the recent advancements [18]–[25],
CF trackers achieve state-of-the-art performance. The classi-
fication based trackers [26]–[28] regard visual tracking as a
binary classification problem and learn a binary classifier to
distinguish the target from background candidates. Recently,
Siamese network based tracking has attracted much popularity.
The Siamese trackers [29]–[31] handle visual tracking via
template matching and utilize a shared-weight network for
similarity estimation. The recent improvements upon Siamese
trackers include attention mechanism [32], model update
[33]–[35], triplet loss [36], and target-aware fine-tuning [37].
Based on the SiamFC [29], SiamRPN [38] proposes another
region proposal network (RPN) to estimate the target scale.
By improving the training strategy [39] and adopting deeper
backbone networks [40], [41], SiamRPN achieves remarkable
performance. In recent works [12], [42], [43], regression based
methods online learn a CNN kernel for target search, which
is expected to be discriminative between the foreground and
background contexts. In this work, we take the current state-
of-the-art DiMP tracker [12] as our baseline approach.

B. Ensemble Tracking

To better cope with the complex scenarios and enhance the
prediction robustness, ensemble trackers are widely explored.
In [10], [11], off-the-shelf trackers are treated as the black
boxes and their predicted bounding boxes are taken as the input
of the fusion algorithms. The MEEM method [44] exploits
the entropy-based relationship between the current tracker
and its historical snapshots. In [5], three SVM based trackers
with different features are constructed, which are adaptively
selected according to the forward and backward trajectory
consistency. To remove the redundancy among weak models,
DEDT method [7] trains diverse models by generating an
efficient set of artificial data. In CF trackers, since HCF [9] and
C-COT [18] propose to fuse the response maps from different
CNN levels, integrating multiple individual CFs has been a
common technique in the following CF methods [23], [25],
[45], [46]. The Staple tracker [2] consists of a correlation filter
and a color-histogram based model to complement each other.
The MCCT tracker [6] assigns the suitable weak experts based
on their pair-wise and self-wise relationships. The SCT [3] and
ACFN [47] approaches construct weak CF trackers with dif-
ferent features and design the attention mechanisms for model
selection. In the classification based framework, BranchOut [8]
extends MDNet [26] by introducing multiple fully-connected
layers and selectively updates them to eliminate the overfit-
ting issue. In [48], due to limited training samples, STCT
aims to avoid the overfitting issue of the off-the-shelf CNNs
(e.g., VGG) in visual tracking. STCT also uses binary masks
to force the base learners (CNN channels) to learn differ-
ent features. Under the Siamese tracking pipeline, SA-Siam
approach [4] individually trains an appearance model and a
semantic model for online combination. In POST tracker [49],
an agent network trained via reinforcement learning is uti-
lized to switch multiple Siamese trackers. Learning part-based
models for joint tracking is also explored in the Siamese
networks [50], [51].
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Despite the recent success, the above approaches gener-
ally design the ensemble models and fusion strategies in
a heuristic manner. The empirical fusion strategies such as
the weighted manner [2], [4], [6], [9] require the manually
tuned hyper-parameters. Some existing approaches rely on
the expert intuition to choose features or design the base
models [2]–[4], [6], [9], [47], and how to promote the diver-
sity for more effective cooperation has been rarely investi-
gated. In this work, we automatically learn diverse models by
introducing additional penalty terms in the training stage and
optimize the whole ensemble framework including the fusion
module in an end-to-end manner.

Learning diverse visual representations are also explored in
the CNN network training [52], [53]. For example, in [53],
a DeCov loss is proposed to reduce the correlation of CNN
channels to avoid overfitting. In [52], different orthogonal-
ity regularizations are explored to learn robust deep feature
extractors. In this work, we aim to enlarge the prediction-level
diversity for ensemble tracking. Although our method shares
partial similarity with [52], [53], the motivation and technical
details are quite different. Especially for our response diversity
regularization and fusion module, they are specially designed
for the visual tracking task.

III. BASELINE APPROACH

Our baseline approach, DiMP tracker [12], adopts a
Siamese-like pipeline consisting of a template branch for
target model learning and a test branch for loss computation.
The desirable target model f (i.e., a convolutional kernel) is
first initialized using the foreground features. Then, different
from Siamese trackers [29], [38], DiMP further optimizes the
discriminative model f using both foreground and background
contexts by minimizing the following loss:

L( f ) = 1

|Strain|
∑

(x,c)∈Strain

‖r(x ∗ f, c)‖2 + ‖λ f ‖2, (1)

where x and c are the training samples and the corresponding
ground-truth labels. The residual function r(s, c) is a combined
version of both regression loss and hinge loss, as follows:

r(s, c) = vc · (mcs + (1 − mc)max(0, s) − yc) , (2)

where vc, mc, and yc are the spatial weight, target mask, and
regression target, respectively. These parameters are learned
by the head network. Based on Eq. 1, the target model f can
be optimized via the gradient descent:

f (i+1) = f (i) − α∇L( f (i)). (3)

Instead of using a fixed learning rate α, DiMP computes an
adaptive α for fast convergence:

α = ∇L( f (i))T∇L( f (i))

∇L( f (i))T Q(i)∇L( f (i))
, (4)

where Q(i) = (J (i))T J (i) and J (i) is the Jacobian of the
residuals at f (i).

After computing the target model f (i), the network is
optimized by minimizing the classification loss of the test

samples:

Lcls = 1

Niter

Niter∑

i=0

∑

(x,c)∈Stest

∥∥∥�(x ∗ f (i), zc)
∥∥∥

2
, (5)

where �(s, z) is a hinge-like residual function and zc is the
ground-truth label of the test image. For more details, please
refer to DiMP [12].

IV. OUR APPROACH

A. Framework Overview

Despite the impressive performance of DiMP [12], it still
struggles to comprehensively model the target appearance due
to the limited model capacity and diversity. In this work,
we go a step further by introducing multiple diverse head
models to enrich the model representational capability of
the original DiMP. The backbone network of DiMP is the
widely used ResNet [54], which extracts powerful features
for the subsequent target classification and bounding box
regression. As shown in Figure 2, the head network of DiMP
contains the following two parts with learnable parameters:
(1) The feature refinement module, which leverages several
convolutional layers to refine the backbone features to better
suit the tracking task (i.e., the yellow boxes in Figure 2).
(2) The model initializer and optimizer. These modules learn
some free parameters (e.g., spatial weight and target mask in
Section III) to guide the optimization of the final discriminative
model.

The aforementioned modules are the core components in
distinguishing the target from background objects. Neverthe-
less, relying on a single head network restricts the tracking
performance. To this end, we construct multiple head models
to complement each other for more convincing predictions.
Furthermore, we force the independently optimized models
and their output results to be diverse, as shown in Figure 2.
Finally, relying on the response fusion module, we assess the
quality of various tracking results and adaptively fuse them
as the final prediction. By virtue of the joint training, our
framework is free of special model designs and empirical
fusion rules.

In the following, we first describe the diversity regulariza-
tions in subsection IV-B. Then, we present the response fusion
module in subsection IV-C. We elaborate the training details
in subsection IV-D. Finally, we briefly describe the online
tracking process in subsection IV-E.

B. Enlarging Diversity in Ensemble Framework

To obtain diverse models with distinctive tracking capa-
bilities, we first introduce the model diversity constraint.
Then, we introduce another response diversity regularization
to enlarge the differences among multiple tracking results.

1) Model Diversity: We construct N head networks on
the top of a shared ResNet backbone. Constructing multiple
head networks with different architectures may potentially
acquire superior model diversity, while this needs special
designs and time-consuming experimental validations. In our
approach, we aim to automatically obtain diversified models
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Fig. 2. Pipeline of the proposed ensemble tracking framework. Our method consists of a shared backbone network for feature extraction, multiple head
networks to predict diverse results, and a fusion module to dynamically integrate the response maps.

Fig. 3. In the training stage, we mask the target areas in the response maps for pair-wise divergence estimation. We aim to enlarge the prediction differences
in the background areas in multiple tracking results to complement each other.

during the offline training stage in a data-driven manner. Thus,
for simplicity, all the head models in our framework adopt
the same architecture as in DiMP [12]. Ideally, the random
initialization already enables these head networks to converge
differently and lead to fairly distinctive models. To further
encourage the diversity, we introduce an additional model
regularization in the training stage.

Let f j denote the discriminative model generated by the
j -th head network, which can be computed via Eq. 1. We
consider reducing the model pair-wise correlation to enlarge
the diversity. To be specific, we leverage the widely used
cosine distance to measure the correlation. The cosine distance
between two vectors a and b can be calculated by cos(a, b) =

a·b
‖a‖·‖b‖ . Given N models, the model diversity regularization
term is defined as follows:

Lm-div = 1

N2 − N

N∑

j=1

N∑

k=1,k �= j

|cos
(
vec( f j ), vec( fk)

) |, (6)

where vec(·) denotes the vectoring operation that reshapes the
convolutional kernel f to a one-dimensional vector. The range
of cosine distance is [−1,+1], where −1 and +1 denote the
negative and positive correlations, respectively. We add the

absolute function | · | to force the model vectors to be mutually
orthometric without (positive or negative) correlation.

2) Response Diversity: In the experiments, we observe
that multiple diverse models sometimes still yield similar
tracking results. Ideally, all the head models are supposed
to predict correctly and obtain the highest peak in the true
target localization. At the same time, we also expect that the
head models generate diversified results in the rest predictions
except their highest peaks. Take Figure 3 as an example,
Model II tends to be more easily misled by the left distractor
object while model I and III show higher responses on the
right distractor. In other words, the second-best, third-best,
and other peak predictions from multiple models are expected
to be different. After adaptively fusing these diverse response
maps, the highest response peak (the target peak) will be
strengthened and the rest sub-highest peaks (the distracting
peaks) will be largely averaged and restrained. Thus, by fusing
multiple reliable but diverse results, the distractor misguidance
and occasional drift in visual tracking can be largely avoided.
To this end, we introduce the response diversity regularization.

Given the ground-truth label in each frame, we first generate
a binary mask to exclude the ground-truth target area, as shown
in Figure 3. In the regression based trackers including DiMP,
each search image has a Gaussian-shaped ground-truth map
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zc. Based on zc, we generate the following binary mask:
M = H(T − zc), (7)

where H(·) is the Heaviside function (or step function) and T
is a small threshold to separate the peak area from the rest
background area in zc.

Given the predicted response map R j of the j -th head
network, to focus on the distracting peaks in the background
area, we (1) multiply R j by the mask M to exclude the
ground-truth target area and (2) ignore the negative values
in the background. This can be achieved by the following
equation:

R̄ j = ReLU(R j � M), (8)

where � denotes the element-wise product and ReLU(·)
function maintains the subpeaks (i.e., positive values) in the
background. Our goal is to enlarge the differences among
{R̄ j }N

j=1. Similarly, we also adopt the cosine distance to
compute the correlation of different response maps, as shown
in Eq. 9.

Lr-div = 1

N2 − N

N∑

j=1

N∑

k=1,k �= j

cos
(
vec

(
R̄ j

)
, vec

(
R̄k

))
. (9)

Compared with the model diversity term, we omit the absolute
function since our masked response maps {R̄ j }N

j=1 are non-
negative. By minimizing the above loss function, we force
the subpeaks in the response maps {R̄ j }N

j=1 to localize in
a variety of places. In this way, different predictions can
potentially counteract each other at the nontarget areas and
effectively alleviate the tracking drift caused by the distracting
predictions.

3) Diversity Regularization: Finally, we equally combine
the aforementioned Eq. 6 and Eq. 9 as the final regularization
term to encourage the diversity during offline training: Ldiv =
Lm-div + Lr-div.

C. Response Fusion Module

After computing the response maps from individual head
networks, we integrate these results in an adaptive weighted
manner. How to measure the response reliability has been
widely explored and the empirical strategies such as peak-
to-sidelobe ratio (PSR) [55] and average peak-to-correlation
energy (APCE) [56] have been studied. However, these man-
ually designed rules may not suit the ensemble task. As
validated in the experiments, using the maximum value or
PSR value of the response map cannot satisfactorily fuse the
response maps. In this work, we leverage the CNN network
to assess the quality of various responses. To be specific,
we reshape the response map R j to the one-dimensional vector
and then use a two-layer multi-layer perceptron (MLP) to
encode it to a value, representing the fusion weight. Then, the
weight of each response map is normalized by the softmax
function as follows:

w j = exp(MLP(vec(R j )))∑N
j=1 exp(MLP(vec(R j ))))

, (10)

where MLP(·) denotes the multi-layer perceptron.

After obtaining the response weight, we fuse multiple
independent results as the final response Rfinal in a weighted
manner: Rfinal = ∑N

j=1 w j · R j .

D. Offline Training

Given the training samples and corresponding ground-truth
labels (x, c) ∈ Stest, similar to Eq. 5, we introduce an
additional classification loss Lfusion. The loss Lfusion, as shown
in Eq. 11, is based on the fused response map Rfinal, which
aims to train the aforementioned fusion module.

Lfusion =
∑

(x,c)∈Stest

‖�(Rfinal, zc)‖2 . (11)

To jointly train the backbone network, multiple head networks,
and the fusion module, we integrate all the loss functions to
form the final training objective, as follows:

Lfinal = Lreg + λ · (Lcls + Lfusion) + Ldiv, (12)

where λ is the weighting parameter as in DiMP, Lreg denotes
the loss of the IoU predictor [57] and readers can refer to [57]
for more details.

E. Online Tracking

The aforementioned backbone network, multiple head mod-
els, and fusion module are jointly learned in the offline
training stage. After offline training, all the CNN parameters
are frozen without further fine-tuning during online tracking.
In the tracking stage, our method is similar to our baseline
approach DiMP. Given the initial target location, multiple head
networks learn diverse discriminative models (i.e., convolu-
tional kernel f in Eq. 1) for visual tracking. After parallel
prediction, the fusion module adaptively integrates diverse
response maps. The highest peak in the fused response map
is determined as the target localization. The target scale is
further refined by the IoU predictor [57]. For each head model,
we maintain an independent template ensemble. The head
models are incrementally updated using their corresponding
template ensembles.

V. EXPERIMENTS

In this section, we first introduce the implementation details
of our approach. Then, we verify the effectiveness of the
proposed techniques by extensive ablative studies. Finally,
we evaluate our approach on seven challenging benchmarks
including TrackingNet [15], GOT-10k [14], LaSOT [13], VOT-
2019 [58], NFS [59], OTB-2015 [60], and UAV123 [61].

A. Implementation Details

In the experiments, following DiMP [12], we utilize the
training splits of TrackingNet [15], LaSOT [13], GOT-10k
[14], and COCO [62] for offline training. The ADAM opti-
mizer [63] is employed with an initial learning rate of 0.01,
and use a decay factor 0.2 for every 15 epochs. We do not
modify the network structure and simply initialize 5 identical
head networks in our ensemble framework. The threshold T
in Eq. 7 is set to 0.05. The weighting parameter λ in Eq. 11 is
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TABLE I

COMPARISON WITH OUR INDIVIDUAL HEAD NETWORKS (I.E., MODEL I,
II, III, IV, AND V) ON THE UAV123 [61], LASOT TEST SET [13], AND

GOT-10K VALIDATION SET [14]. THE EVALUATION METRIC IS THE

AREA-UNDER-CURVE (AUC) SCORE OF THE SUCCESS PLOT.
OUR METHOD NOTABLY OUTPERFORMS THE

INDIVIDUAL MODELS

set to 100 as in DiMP. The multi-layer perceptron (MLP) has
a hidden layer with 128 neurons, and the non-linear function
of the hidden layer is ReLU. For other details, we just follow
DiMP without modifications.

We denote our Diverse Ensemble Tracker as DET. Our
tracker is implemented in Python using PyTorch and operates
at about 40 frames per second (FPS) with a ResNet-18
backbone (denoted as DET-18) and 35 FPS with a ResNet-
50 backbone (denoted as DET-50) on a single Nvidia GTX
1080Ti GPU. On each dataset, we run our method three times
and take the average performance to alleviate the algorithm
fluctuation.

B. Ablation Study

In this subsection, we utilize DET-18 to verify the effective-
ness of the proposed components. The UAV123 [61], LaSOT
test set [13], and GOT-10k validation set [14] are selected for
ablative experiments, which contain 123, 270, and 160 videos,
respectively. Note that GOT-10k validation set with diverse
object classes is also suitable for assessing the generalization
of our framework.

1) Performance of Individual Models: In Table I, we evalu-
ate the performance of each single head network. Different
models have the same network structure but are forced to
model distinctive target representations. By fusing the results
of these models, the final performance is obviously improved.

It is worth mentioning that DiMP is an extremely strong
baseline, which has achieved a remarkable performance
plateau on various benchmarks. Nevertheless, our ensemble
framework makes a further advance and steadily improves
the tracking accuracy by exploiting diverse representations.
As for the tracking efficiency, individual models operate at
about 48 FPS and our ensemble framework with 5 head
models almost maintains the efficiency with a real-time speed
of 40 FPS. Adopting more heads can further promote the
performance, while we observe that 5 heads already makes
a good balance of efficiency and accuracy.

2) Performance of More Head Models: In our experiments,
we adopt 5 head networks for cooperation. In each frame,
the main computational cost lies in the feature extraction
by the deep backbone network (e.g., ResNet [54]). Multiple
head networks bring an ignorable computational burden in
the feed-forward pass. The main cost of multiple heads is
their model updates. Nevertheless, DiMP [12] is robust and
updates the discriminative model f in a sparse frequency (per
20 frames), which also ensures the high efficiency of our
approach.

TABLE II

TRACKING PERFORMANCE OF DET-18 WITH DIFFERENT NUMBER OF
HEAD MODELS ON THE ON THE UAV123 [61], LASOT TEST SET [13],

AND GOT-10K VALIDATION SET [14]. THE EVALUATION METRIC

IS THE AUC SCORE

TABLE III

ANALYSIS OF DIFFERENT DIVERSITY REGULARIZATION TERMS ON THE
UAV123 [61], LASOT TEST SET [13], AND GOT-10K VALIDA-

TION SET [14]. BOTH MODEL DIVERSITY LM-DIV AND RESPONSE

DIVERSITY LR-DIV REGULARIZATIONS IMPROVE THE OVERALL
PERFORMANCE

We test different numbers of the head network for ensemble
tracking, as shown in Table II. Only one head network
degenerates our framework to the standard DiMP. With more
head models, the tracking performance steadily improves.
But the performance gain becomes less obvious after adopt-
ing more than 3 heads, which means the performance has
gradually reached saturation. We observe that the 5-head
version achieves a good balance of efficiency and accuracy.
Adopting 7 models yields identical or slightly better results
compared with the 5-head version. By constructing 10 diverse
head models, our method achieves further improvement (about
0.3% on the large-scale LaSOT [13]). However, more head
networks also reduce online tracking efficiency. For example,
the 10-head version only maintains a near real-time speed.

3) Effectiveness of the Diversity Regularizations: In
Table III, we assess the effectiveness of the proposed model
diversity and response diversity regularizations. Without any
regularization (i.e., “w/o Ldiv” in Table III), the ensemble
framework does not show obvious performance advantage
compared with the individual models in Table I. For example,
the “w/o Ldiv” version exhibits an AUC score of 63.5% on
the UAV123, only slightly outperforming the base models in
Table I. This indicates that simply training 5 models for fusion
cannot acquire satisfactory performance gain due to the exis-
tence of model redundancy. From Table III, we can observe
that both model diversity and response diversity enhance the
tracking accuracy. The response regularization seems to be
more effective since it directly enlarges the differences among
multiple predictions. By combining these two regularization
terms, superior performance can be obtained.

4) Effectiveness of the Fusion Module: In this work, we pro-
pose a simple fusion module. In the experiments, we also
test other widely adopted techniques. In Table IV, “Average
Fusion” means the simple average of all the response maps,
“Max Fusion” denotes the maximum value of each response is
determined as the fusion weight, and “PSR Fusion” represents
the PSR value [55] of each response is set as the fusion weight.
As shown in Table IV, our fusion module, benefitting from the
end-to-end training, achieves the superior performance.
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TABLE IV

COMPARISON WITH THE EMPIRICAL FUSION STRATEGIES (I.E., AVERAGE
FUSION, MAX FUSION, AND PSR FUSION) ON THE UAV123 [61],

LASOT TEST SET [13], AND GOT-10K VALIDATION SET [14] IN

TERMS OF AUC SCORE

TABLE V

ABLATION STUDY BASED ON THE SIAMFC-LIKE PIPELINE ON THE

UAV123 [61], LASOT TEST SET [13], AND GOT-10K VALIDATION
SET [14] IN AUC SCORE. BOTH MODEL DIVERSITY LM-DIV AND

RESPONSE DIVERSITY LR-DIV REGULARIZATIONS IMPROVE

THE OVERALL PERFORMANCE

5) Improvements Upon a SiamFC-like Baseline: To verify
the generalization capability of our approach, we further adopt
our ensemble framework to a clean SiamFC-like baseline. To
be specific, similar to DiMP-18, we still use the ResNet-18
for feature extraction and IoUNet for target scale estimation.
Differently, we simply utilize the target feature as the template
kernel to convolve with the search feature for response genera-
tion, which is identical to the cross-correlation in SiamFC [29].
Without sophisticated model optimization techniques in DiMP
[12], we can better assess the effectiveness of our method.
Our head models consist of two convolutional layers (3 × 3
Conv + BN) to map the shared backbone features to diverse
feature subspaces. Similar to our DET-18, we also construct
five diverse head models.

As shown in Table V, we can observe that without our
regularization terms, simply combining 5 models (i.e., “w/o
Ldiv") cannot achieve satisfactory results. Our model and
response regularizations consistently improve the baseline
performance. Finally, with both Lm-div and Lr-div, our complete
version significantly outperforms the baseline by 5.7% AUC
on the GOT-10k validation set and 4.7% AUC on the LaSOT
test set. Note that SiamFC-like tracking baseline is simple
without bells and whistles, where the performance gains can
be attributed to our designed diversity constraints.

C. State-of-the-Art Comparisons

In this subsection, we present the comparison results with
recent methods on the following 7 challenging datasets. Our
baseline tracker DiMP has already achieved remarkable results
on these benchmarks. Despite the limited improvement room,
our method still steadily improves DiMP on all the datasets.

1) TrackingNet [15]: TrackingNet is a recently released
large-scale dataset. We evaluate our method on the test
set of TrackingNet, which consists of 511 videos. In this
benchmark, we compare our approaches with the state-of-
the-art C-RPN [64], SPM [65], ATOM [57], SiamRPN++
[40], and DiMP-50. As shown in Table VI, the proposed
DET-50 achieves a normalized precision score of 81.0% and

TABLE VI

STATE-OF-THE-ART COMPARISON ON THE TRACKINGNET TEST SET [15]
IN TERMS OF PRECISION (PREC), NORMALIZED PRECISION (N. PREC),

AND SUCCESS (AUC)

TABLE VII

STATE-OF-THE-ART COMPARISON ON THE GOT-10K TEST SET [14] IN

TERMS OF AVERAGE OVERLAP (AO), AND SUCCESS RATES (SR) AT
OVERLAP THRESHOLDS 0.5 AND 0.75

a success score of 75.5%, which is superior to all previous
top-performing trackers such as DiMP-50 and SiamRPN++.
Specially, our DET-50 improves the baseline DiMP-50 by
relative gains of 2.0% in AUC score.

2) GOT-10k [14]: GOT-10k is a large-scale dataset includ-
ing more than 10,000 videos. We test our methods on the test
set of GOT-10k with 180 sequences. The main characteristic
of GOT-10k is that the test set does not have overlap in object
classes with the train set, which is designed to assess the
generalization of the visual tracker. Similar to TrackingNet,
GOT-10k also hides the ground-truth labels of the test set. The
comparison results in Table VII are obtained via the official
server. On this benchmark, as shown in Table VII, our DET-50
exhibits the best performance with a SR0.50 score of 74.7% and
an AO score of 63.0%, outperforming our baseline DiMP-50
by relative gains of 4.2% in SR0.50 and 3.1% in AO, verifying
the strong generalization of our tracker.

3) LaSOT [13]: LaSOT is a large-scale benchmark consist-
ing of 1200 videos. The average video length in LaSOT is
about 2500 frames, which is more challenging than classic
short-term tracking datasets. Therefore, how to handle the
drastic target appearance changes is vital in this dataset. We
evaluate our approach on the LaSOT test set with 280 videos.
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Fig. 4. Success plots of the state-of-the-art trackers on the LaSOT test set [13]. The legend shows the AUC score. In the upper-left figure, we present the
overall performance of the methods. In the rest figures, we show success plots on the challenging attributes.

TABLE VIII

THE ACCURACY, ROBUSTNESS (FAILURE RATE) AND EXPECTED AVERAGE OVERLAP (EAO) OF STATE-OF-THE-ART METHODS ON THE VOT-2019 [58]

The success plots of the state-of-the-art methods are shown
in Figure 4. As reported in LaSOT [13], MDNet [26] is the
previous best tracker on this benchmark. Our DET-50 achieves
an AUC score of 58.0%, surpassing MDNet by a considerable
margin of 18.3% in AUC. For completeness, we also include
the recently proposed C-RPN, SiamRPN++, ATOM, DiMP-
18, and DiMP-50 for comparison. Our DET-50 outperforms
all previous methods. Compared with the recent C-RPN,

SiamRPN++, ATOM, and DiMP-18, our CARE surpasses
them by 9.2%, 5.1%, 3.3%, and 1.2% in AUC, respectively.
Compared with our strong baselines DiMP-50 and DiMP-18,
the proposed DET-50 and DET-18 outperform them by relative
gains of 2.1% and 3.8%, respectively.

To further investigate how our method works, we exhibit
some tracking attributes that benefit from our ensemble frame-
work. In Figure 4, we can observe that our main performance
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Fig. 5. Visualization of the response maps from the individual head networks and fusion module. Different models yield distinctive tracking responses.
The prediction failures are highlighted by the red circles. By adaptive fusion, the final prediction effectively restrains the prediction biases and promotes the
tracking robustness. The videos from top to down are Ironman, Walking, Bolt, Matrix, and Soccer from OTB-2015 [60].

gains are from the attributes such as viewpoint change (VC),
low resolution (LR), illumination variation (IV), fast motion
(FM), and background clutter (BC). A common characteristic
in these attributes is that the target generally undergoes drastic
appearance changes. Thanks to the diverse models for mani-
fold representations, our ensemble framework shows superior
accuracy in the above scenarios. On the rest attributes such as
deformation, our trackers also exhibit better or similar results
in comparison with their baselines.

4) VOT-2019 [58]: VOT-2019 benchmark consists
of 60 videos for short-term tracking evaluation. VOT-2019
updates VOT-2018 by replacing 10 least challenging videos.
The tracking performance in VOT is evaluated using Expected
Average Overlap (EAO), which takes both accuracy (average
overlap over successful frames) and robustness (failure rate)
into account. We evaluate our DET-18 and DET-50 with
state-of-the-art participants in VOT-2019 for comparison.
Table VIII shows the accuracy, robustness, and EAO scores
of different trackers. Compared with DiMP-50, our DET-50
shows similar tracking accuracy but exhibits a 14.7% lower
failure rate (i.e., robustness score). By reducing the tracking
variance, our ensemble framework improves DiMP-50 by a
relative gain of 4.0% in EAO. Among all the comparison
methods, our DET-50 also achieves the best robustness.
Compared with other recent deep trackers with the ResNet-50
backbone, our DET-50 significantly surpasses SiamRPN,
DWSiam [41] and SiamMask [68] by relative gains of 38.2%,
31.8%, and 37.3% in EAO, respectively. The VOT-2019
challenge winner (i.e., DRNet) shows an EAO score of 0.395
[58]. Overall, the proposed DET-50 is comparable with the
current top-performing trackers with a very competitive EAO
of 0.394.

5) Need for Speed [59]: NFS dataset contains 100 videos
with fast-moving objects. We evaluate our approaches on
the 30 FPS version of this benchmark. As shown in Table IX,
our DET-50 achieves an AUC score of 63.4%, surpassing all
the state-of-the-art methods such as UPDT [46], ATOM, and
DiMP-50. As shown in Table IX, our DET-50 and DET-18
exhibit competitive tracking speeds of 35 FPS and 40 FPS,
respectively, which are slightly lower than their baseline
approaches. As for the tracking accuracy, our methods steadily
outperform their baselines. Overall, our ensemble framework
achieves a good balance of performance and efficiency.

6) UAV123 [61]: UAV123 dataset includes 123 challeng-
ing videos collected by the UAV platforms. In Table IX,
we present the tracking results of the state-of-the-art trackers.
Compared with these approaches, our DET-50 achieves the
best result with an AUC score of 66.4%. Note that DET-
50, DiMP-50, and SiamRPN++ all adopt the same backbone
network (i.e., ResNet-50), our superior performance verifies
the effectiveness of the proposed ensemble framework.

7) OTB-2015 [60]: OTB-2015 is a popular benchmark
with 100 videos. On this dataset, as shown in Table IX,
our DET-18 and DET-50 achieve the AUC scores of 67.8%
and 69.2%, respectively. Compared with the top-performing
trackers on this dataset such as ECO [66] and UPDT [46],
our DET-50 overall exhibits competitive performance with a
real-time speed.

D. Result Visualization

In Figure 5, we present some visualization examples of
our ensemble framework (DET-50). From the results, we can
observe that multiple head models generate diverse tracking
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TABLE IX

STATE-OF-THE-ART COMPARISON ON THE NFS [59], OTB-2015 [60], AND UAV123 [61] DATASETS IN TERMS OF AUC SCORE

Fig. 6. Tracking results of our DET-50 and its baseline approach DiMP. Our ensemble framework, by constructing diverse models, exhibits superior tracking
robustness.

response maps thanks to the proposed diversity regulariza-
tions. Even though some head networks generate unsatis-
factory results, our fusion module still shows robust fusion
by adaptively weighing multiple predictions. By fusing these
diversified predictions, accidental tracking drift can be largely
alleviated.

It is interesting that our fusion module potentially judges
the reliability of different results to dynamically fuse them.
For example, in the first row in Figure 5 (video Ironman),
most individual response maps fail to localize the target with
multiple subpeaks. However, our fusion module weighs the
reliable response more (i.e., the response from Modle III and
V, which have high peaks in the center). In the last two videos
Matrix and Soccer, most models still drift to the distracting
objects. By virtue of our fusion module, the final fused results
exhibit better robustness with less ambiguity. The tracking
examples in Figure 6 also indicate the high robustness of
our ensemble framework compared with the baseline model
DiMP-50.

VI. CONCLUSION

In this paper, we propose a simple, clean yet effective
ensemble framework for robust visual tracking. Based on the
shared backbone features, we construct multiple head models
to cooperatively discriminate the target. To obtain accurate and
diversified predictions for complementary fusion, we propose
the model diversity and response diversity regularizations
during training. The model diversity regularization enlarges the
representational divergences among multiple head networks,
while the response diversity encourages the prediction dif-
ferences in the background areas. To adaptively integrate the
response maps from parallel head models, we further introduce
a fusion module to achieve the joint optimization of the whole
pipeline. Extensive ablation studies verify the effectiveness of
the proposed techniques. On the recent large-scale tracking
datasets such as LaSOT, TrackingNet, and GOT-10k, our

approach outperforms previous state-of-the-art trackers while
running in real-time.

Our future works include searching diversified head net-
works with mutually different architectures (e.g., using neural
architecture search (NAS) techniques) and training multiple
models using different data to better explore the potential of
ensemble tracking.
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