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Abstract

Recent years have witnessed the rapid progress of image cap-
tioning. However, the demands for large memory storage and
heavy computational burden prevent these captioning mod-
els from being deployed on mobile devices. The main obsta-
cles lie in the heavyweight visual feature extractors (i.e., ob-
ject detectors) and complicated cross-modal fusion networks.
To this end, we propose LightCap, a lightweight image cap-
tioner for resource-limited devices. The core design is built
on the recent CLIP model for efficient image captioning. To
be specific, on the one hand, we leverage the CLIP model to
extract the compact grid features without relying on the time-
consuming object detectors. On the other hand, we transfer
the image-text retrieval design of CLIP to image captioning
scenarios by devising a novel visual concept extractor and a
cross-modal modulator. We further optimize the cross-modal
fusion model and parallel prediction heads via sequential and
ensemble distillations. With the carefully designed architec-
ture, our model merely contains 40M parameters, saving the
model size by more than 75% and the FLOPs by more than
98% in comparison with the current state-of-the-art methods.
In spite of the low capacity, our model still exhibits state-of-
the-art performance on prevalent datasets, e.g., 136.6 CIDEr
on COCO Karpathy test split. Testing on the smartphone with
only a single CPU, the proposed LightCap exhibits a fast in-
ference speed of 188ms per image, which is ready for practi-
cal applications.

1 Introduction
Image captioning aims to automatically generate natural and
readable sentences to describe the image contents, which
provides a promising manner to help visually impaired peo-
ple. The recent decade has witnessed a surge of captioning
algorithms, benefiting from the development of large-scale
pre-training (Zhou et al. 2020; Li et al. 2020b; Hu et al.
2021a; Wang et al. 2021), advanced representation learning
(Zhang et al. 2021a; Huang et al. 2021), and modern cross-
modal modeling (Xu et al. 2021; Li et al. 2020b; Fang et al.
2021a). In spite of the remarkable advances, current heavy-
weight captioning algorithms are not available to visually
impaired people, who generally rely on low-resource de-
vices such as portable phones to assist the daily life, instead
of carrying on heavy computer servers with modern GPUs.
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Figure 1: Compared to the state-of-the-art VinVL (Zhang
et al. 2021a) and Oscar (Li et al. 2020b), our method saves
more than 75% parameters and 98% FLOPs. Compared with
the lightweight DistillVLM (Fang et al. 2021b), our method
not only yields fewer parameters and FLOPs, but also out-
performs it by a notable margin.

Designing computationally efficient and memory-friendly
captioning methods is vital for practical applications but has
been largely overlooked in the literature.

To achieve excellent performance, recent image cap-
tioners typically adopt deep object detectors as well as
large cross-modal fusion networks. For example, the recent
VinVL and LEMON algorithms (Zhang et al. 2021a; Hu
et al. 2021a) utilize a strong but heavyweight ResNeXt-152
based detection model and a base or large BERT model
(Devlin et al. 2018). Some methods even scale the model
size from base to huge to attain superior captioning per-
formance (Hu et al. 2021a), but how to effectively reduce
the model size for edge devices is rarely touched in these
works. These sophisticated image captioning models strug-
gle to meet the real-time requirement of real-world applica-
tions, let alone the huge power consumption and memory
storage. It is therefore non-trivial to investigate how to de-
sign an efficient image captioner with smaller memory stor-
age, faster inference speed, and satisfactory performance.

In this paper, we propose LightCap, a lightweight yet
high-performance image captioning method for mobile de-
vices. Our core design is largely inspired by the recent CLIP
method (Radford et al. 2021). CLIP is an impressive image-
text retrieval model, which readily tells what objects ex-
ist in the image but fails to generate a description for the
given image. In this work, we investigate how to transfer
such a strong cross-modal retrieval model to an image cap-
tioner, and meanwhile break the obstacles that hinder im-
age captioners from being deployed on the mobile devices.
The main obstacles that hinder image captioners from be-
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ing deployed on mobile devices are their cross-modal fusion
and image feature extraction models. For visual represen-
tations, we leverage the efficient yet compact grid features
from the CLIP without relying on time-consuming Region
of Interest (ROI) features from sophisticated object detec-
tors. To unveil the potential of a capacity-limited model, we
propose the following designs. (1) Visual concept extractor.
To take advantage of the cross-modal retrieval capability of
CLIP, we train a region-based alignment model to retrieve
the visual concepts from an off-the-shelf dictionary. These
visual concepts serve as the description hints of the image
to facilitate caption generation. (2) Cross-modal modulator.
Before being fed to the fusion model, the feature dimen-
sion of the CLIP feature is highly compressed (i.e., from
2048 to 312), which inevitably loses semantic representa-
tions. To retain the valuable semantics, we propose a cross-
modal modulator that takes the textual concepts as inputs to
activate the informative feature channels of the CLIP model.
(3) Ensemble head. We jointly optimize and distill an en-
semble of head networks for collaborative prediction. We
disentangle the key parameters and share the rest weights
of different heads for lightweight design. Last but not least,
for the cross-modal fusion model, instead of the widely-
used BERTbase (Devlin et al. 2018), we chose the efficient
TinyBERT (Jiao et al. 2019) to fuse cross-modal features.
By virtue of our designed sequential knowledge distillations
in both pre-training and fine-tuning stages and the ensem-
ble distillations from multiple teachers, a TinyBERT almost
matches the performance of the standard BERT.

By highly limiting the capacity of each component in our
image captioner, the overall model merely contains 40M pa-
rameters and 9.8G FLOPs, saving the model size by more
than 75% and the FLOPs by more than 98% compared to the
current popular image captioning models (Figure 1). Despite
its low capacity, the proposed method still exhibits state-of-
the-art performance on prevalent captioning datasets, e.g.,
136.6 CIDEr on COCO Karpathy split (Lin et al. 2014). The
model storage memory of LightCap is about 112MB, which
is affordable on most mobile devices. It merely costs about
188ms to process an image when testing the proposed Light-
Cap on the mobile phone with only one CPU, which is read-
ily ready for practical usage.

In summary, in this paper, we systematically show how
to obtain a lightweight, efficient, and high-performance cap-
tioner by careful designs and training:

• Model Design. We propose a visual concept extractor
and a cross-modal modulator to better exploit the cross-
modal capability of the CLIP model for image caption-
ing. We further design a partially parameter-sharing en-
semble head for collaborative prediction.

• Model Training. We present the sequential knowledge
distillations from pre-training to fine-tuning to distill the
tiny model. We leverage the ensemble distillation to bet-
ter optimize the TinyBERT model and ensemble heads.

2 Related Work
Image Captioning. Image captioning methods generally
contain a visual encoder to extract the image representations

and a cross-modal fusion model to generate the caption. Pre-
vious methods (Huang et al. 2019; Pan et al. 2020; Anderson
et al. 2018; Ji et al. 2021; Song et al. 2021; Fei 2022; Yang,
Liu, and Wang 2022) typically utilize the object detection
methods such as Faster-RCNN (Ren et al. 2016) to extract
ROI features. The recent VinVL method (Zhang et al. 2021a)
shows that a strong visual feature extractor consistently im-
proves the performance on image captioning.

To reduce the computational burden, MiniVLM (Wang
et al. 2020a) designs a lightweight object detector using Ef-
ficientNet backbone (Tan and Le 2019). DistillVLM (Fang
et al. 2021b) leverages knowledge distillation to acquire a
thinner transformer architecture for vision-language tasks.
In contrast to the ROI features from object detectors, some
cross-modal algorithms turn to the grid features for high ef-
ficiency, which are known as the detector-free approaches in
the literature (Fang et al. 2021a; Xu et al. 2021; Wang et al.
2021; Wang, Xu, and Sun 2022). Nevertheless, these mod-
els (Fang et al. 2021a; Wang et al. 2021; Wang, Xu, and Sun
2022) still struggle to be deployed on edge devices. Com-
pared with them, our method leverages a light yet powerful
CLIP model to extract the grid features. We further propose a
concept extractor and a cross-modal modulator to unveil the
cross-modal representation power of the CLIP. Our approach
outperforms previous efficient captioners such as MiniVLM
(Wang et al. 2020a) and DistillVLM (Fang et al. 2021b) with
lower model capacity and faster inference speed, and is even
comparable to the recent heavyweight captioners.

Recent works (Shen et al. 2021; Cornia et al. 2021) also
take advantage of CLIP model for image captioning. Never-
theless, they simply utilize the standard CLIP model to ex-
tract features or image tags. In contrast, to reduce the model
size, we train a lightweight region-level concept extractor as
well as a feature modulator to better exploit the cross-modal
characteristic of CLIP.
VL Pre-training. Vision-language (VL) pre-training aims
to learn robust cross-modal representations to bridge the do-
main gap between vision and language signals (Dou et al.
2021). CLIP (Radford et al. 2021) and ALIGN (Jia et al.
2021) align the VL representations via a light fusion man-
ner (i.e, dot-product) using the contrastive learning tech-
nique. Nevertheless, their light fusion manner fails to con-
duct the cross-modal generation task such as image caption-
ing. In contrast, recent VL pre-training approaches (Zhou
et al. 2020; Chen et al. 2020; Li et al. 2020b,a; Zhang
et al. 2021a) adopt a relatively heavy transformer architec-
ture (Vaswani et al. 2017) to fuse the VL representations,
which are qualified to perform more VL downstream tasks.
Inspired by previous arts, our approach also involves VL
pre-training to facilitate the downstream captioning task.
Differently, we do not employ the widely-adopted bidirec-
tional masked language modeling, and shed light on the uni-
directional language modeling to fully focus on the text gen-
eration task, e.g., image captioning. Furthermore, similar to
previous arts (Jiao et al. 2019; Mukherjee and Awadallah
2020), we adopt the sequential knowledge distillation (KD)
to preserve the model representational capability within a
tiny network. Based on the general KD, we also investigate
how to better leverage KD in the captioning task by intro-
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Figure 2: The overall framework of our LightCap. The input
image is encoded to the grid visual feature via a ResNet-50
model. Then, we leverage a concept extractor to extract the
visual concepts and a cross-modal modulator to reinforce the
visual features. Finally, a TinyBERT fuses multi-modal em-
beddings and an ensemble head performs image captioning.

ducing concept distillation to facilitate the modality align-
ment and ensemble distillation for multi-head optimization.

3 Methodology
In this section, we introduce the technical details of the pro-
posed method. First, in Section 3.1, we elaborate on the
model design of each block. Then, in Section 3.2, we show
the training details. Finally, we exhibit the model distillation
in both pre-training and fine-tuning stages in Section 3.3.

3.1 Model Architecture
The overall framework is shown in Figure 2. Our LightCap
contains an image encoder to extract the visual representa-
tions, a concept extractor to retrieve the visual concepts from
an off-the-shelf vocabulary, and a cross-modal modulator to
enhance the visual representations with the textual (concept)
information. Finally, we use a lightweight TinyBERT to fuse
multi-modal representations and an ensemble head module
to generate the image caption.
Image Encoder. Instead of extracting expensive ROI fea-
tures from object detectors, we leverage the ResNet back-
bone (He et al. 2016) to acquire grid representations. Specif-
ically, we choose the recent CLIP model (ResNet-50 ver-
sion) (Radford et al. 2021) due to (1) its impressive gen-
eralization capability, especially in the cross-modal domain;
(2) its promising potential in extracting visual concepts from
images, which is beneficial to the image captioning task.
CLIP model contains a visual encoder and a text encoder.
In the visual encoder, after obtaining the image feature map,
CLIP additionally learns a transformer block (i.e., attention

pooler) to obtain the global image embedding. In our frame-
work, to save the model capacity, we only utilize the ResNet-
50 backbone in CLIP visual encoder without the attention
pooler to extract the visual features v ∈ R7×7×2048, which
only involves 4.1G FLOPs.
Visual Concept Extractor. Intuitively, knowing the seman-
tic concepts of the image is highly beneficial to image cap-
tioning. Although CLIP model is ready for cross-modal re-
trieval, there still exist two issues. First, CLIP relies on a
heavy attention pooler to obtain the global image represen-
tation, which contains 14.8M parameters and is in conflict
with our lightweight model design. Second, CLIP model is
pre-trained using global image features and thus is not ef-
fective enough in recognizing image regions. To this end,
we design and train an efficient region-based visual concept
extractor on top of the CLIP feature.

The overall architecture of the proposed visual concept
extractor is shown in Figure 3 (left). First, we collect the
common object categories from the Visual Genome dataset
(Krishna et al. 2017), and form these category words using
the description form a photo of [object]. We take ad-
vantage of the CLIP text encoder to extract the textual em-
beddings of these descriptions to form an off-the-shelf vo-
cabulary. Note that this vocabulary contains textual embed-
dings instead of the raw words to avoid unnecessary com-
putations in the captioning stage. Then, we train an effi-
cient foreground-background object detector without know-
ing object classes. This detector is designed to roughly pre-
dict the foreground bounding boxes, whose architecture is
tiny YOLOv5n (Ultralytics 2020) with only 1.9M parame-
ters. After obtaining the object proposals, we employ ROI-
Align (He et al. 2017) to pool the region embeddings. These
ROI embeddings are further processed by two linear blocks
to align with the concept embeddings in the aforementioned
vocabulary. To train this concept extractor, we freeze the
CLIP ResNet-50 parameters and only train two linear lay-
ers using the standard contrastive loss in CLIP.

In summary, compared to the original CLIP, we trans-
fer it from global image-text retrieval to region-level con-
tent retrieval. In the image captioning stage, for each fore-
ground proposal, the object category with the highest simi-
larity score is assigned as its label. All the retrieved labels
are assembled to form the visual concept of the image.
Cross-modal Modulator. ResNet-50 backbone yields the
feature map with a high channel dimension of 2048, which
requires to be highly compressed before multi-modal fusion.
It has been well recognized that different feature channels
contain certain semantics. After extracting the visual con-
cepts that reside in the image, we propose to utilize these tex-
tual hints to promote the visual representations. Specifically,
we train a modulator that receives the concept tokens to acti-
vate the informative channels of the CLIP feature. As shown
in Figure 3 (middle), this cross-modal modulator contains
an embedding layer to embed the concept words, two fully-
connected layers with a non-linear ReLU function to project
the word embeddings, and a Sigmoid function to restrict the
output weight. Finally, we average the output weights of all
the concepts to obtain the final channel activation weight
w ∈ R1×1×2048, which is applied to the raw CLIP feature v
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Figure 3: Left: visual concept extractor block. Middle: cross-modal modulator block. Right: ensemble head block.

to reweigh the channel importance via v� = w⊗v, where⊗
denotes the channel-wise multiplication, and v� is the mod-
ulated CLIP feature.
Multi-modal Fusion Module. The proposed method adopts
TinyBERT4 (Jiao et al. 2019) as the cross-modal fusion
module, which is extremely shallow consisting of only 4
transformer blocks and a hidden size of 312.

Following previous arts (Li et al. 2020b; Zhang et al.
2021a), we apply the seq2seq attention mask to gener-
ate the caption token in an auto-regressive way. Our Tiny-
BERT takes as input the concatenation of the modulated im-
age features v� and visual concept embeddings c, and starts
the caption generation by appending a mask token [MASK]
to the inputs. Then, the previous [MASK] is replaced by the
predicted token, and a new [MASK] is appended to generate
the next word. The words are predicted one by one until the
TinyBERT outputs the [STOP] token.
Ensemble Head Module. Multi-model ensemble is an in-
tuitive way to improve the performance, but will greatly in-
crease the model size. In this work, we propose a parameter-
efficient ensemble head to predict the token. The ensemble
head contains three branches to parallelly tackle the word
embeddings, as shown in Figure 3 (right). We recognize that
the parameter burden of head network mainly resides in the
word embedding layer, whose shape is 312 × 30522 (dic-
tionary size). To reduce the storage room, word embedding
layers in different branches share the model weights, while
the lightweight project layers (shape: 312× 312) before the
word embedding layer are individually optimized for diver-
sity. These parallel head networks are individually distilled
by different teacher networks to further enhance the predic-
tion diversity, which will be discussed in the next section.

3.2 Model Training
Pre-training Stage. Most VL pre-training methods (Tan
and Bansal 2019; Chen et al. 2020; Li et al. 2020b; Zhang
et al. 2021a) utilize the popular masked language modeling
(MLM) loss to pre-train the cross-modal fusion model. Since
our work focuses on the image captioning scenario, we do
not apply the bi-directional modeling manner and choose the
sequence-to-sequence MLM to facilitate the text generation.
To simulate the uni-directional generation process, the self-
attention mask is constrained such that the caption token
can only attend to the previous tokens. To be specific, we

randomly mask 15% of the caption tokens following BERT
and replace them with the special token [MASK]. The fusion
model takes the Image-Concept-Caption triple (v�, c,x)
from the dataset D as input, where x = {x1, · · · , xT } are
the masked input tokens. The training objective is to recon-
struct the masked token xt based on the previous tokens
(x<t), concepts (c), and image features (v�) by minimizing
the following negative log-likelihood:

Lcaption = −E(v�,c,x)∈D

[∑
t

logP (xt|v�, c,x<t)
]
. (1)

Recent works (Li et al. 2020b; Zhang et al. 2021a) ob-
serve that image detection tags are qualified to serve as the
anchor points to facilitate the multi-modal representation
alignment. Inspired by these methods (Li et al. 2020b; Zhang
et al. 2021a), we treat our retrieved visual concepts as the an-
chors to form the modality contrastive loss. To be specific,
we “pollute” the image concept by replacing it with proba-
bility 50% with a different concept from the dataset D. The
potentially polluted image concept is denoted by c?. We use
a binary classifier f(·) on the top of the TinyBERT [CLS]
embedding to judge whether the triple (v�, c?,x) is polluted
(y = 0) or not (y = 1). This concept contrastive loss Lconcept
is defined as follows:

Lconcept = −E(v�,c?,x)∈D
[
logP (y|f(v�, c?,x))

]
. (2)

The aforementioned two losses are equally combined to
form the final training objective in the pre-training stage:
Lpre-train = Lcaption + Lconcept.
Fine-tuning Stage. After model pre-training on the noisy
pre-training data, our LightCap model is further fine-tuned
on the well-annotated captioning dataset such as COCO. In
the fine-tuning stage, we do not adopt the contrastive loss
and only utilize Eq. (1) as the training objective to fully con-
centrate on the image captioning scenario.

3.3 Knowledge Distillation
We further adopt knowledge distillation (KD) to remedy the
performance drop caused by the limited model capacity. We
train teacher networks with the architecture of BERTbase, and
then sequentially distill the student model.
KD in Pre-training Stage. In the pre-training stage, we first
encourage the student model to mimic the transformer atten-



tions and hidden state representations of its teacher:

LKD-1 = LKD
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where MSE(·, ·) denotes the mean-squared loss; AS

i and AT
i

are the attentions from the i-th head of the student model
and teacher model, respectively; HS

j and HT
3×j denote the

j-th and (3× j)-th layer’s hidden state representations from
the student and teacher models, respectively (we empirically
adopt this setting since the teacher model is 3 times deeper
than the student model); W is an 1× 1 linear block to facil-
itate the student model to match its teacher’s feature dimen-
sion for hidden state distillation.

After the attention and hidden representation distillations,
we further perform the second-stage KD, i.e., prediction-
level distillation LKD-2 as follows:

LKD-2 = LKD
caption+LKD

concept = CE
(
zS/τ, zT/τ

)
+CE

(
yS/τ,yT/τ

)
,

(4)
where CE(·, ·) denotes the cross-entropy loss, zS and zT de-
note the soft predictions of the tokens of the student and
teacher; yS and yT are the “pollution” probability of the vi-
sual concepts of the student and teacher; τ refers to the tem-
perature in KD. In this distillation stage, the student model
not only mimics the captioning capability (i.e., token predic-
tion probability) of the teacher viaLKD

caption, but also preserves
the cross-modal alignment capability (i.e., concept “pollu-
tion” probability) via LKD

concept.
KD in Fine-tuning Stage. In the fine-tuning stage, we also
first conduct knowledge distillation on attention weights and
hidden states as in Eq. (3), and then conduct knowledge dis-
tillation on the output probability. However, the model fine-
tuning stage only involves a simple captioning constraint
without the concept contrastive learning. Consequently, we
merely force the student to mimic the token prediction of its
teacher via LKD

caption = CE
(
zS/τ, zT/τ

)
.

Ensemble KD. Actually, instead of adopting a single head,
we construct the ensemble head with three parallel branches.
We train three teacher models with different model initial-
izations. These teachers jointly distill different branches of
the ensemble head model, as shown in Figure 3 (right).

4 Experiments
4.1 Datasets and Metrics
Pre-training Datasets. In the experiments, we collect the
image-text pairs from Google Conceptual Captions (CC3M)
(Sharma et al. 2018), SBU Captions (Ordonez, Kulkarni, and
Berg 2011), OpenImages (Shao et al. 2019), and MS-COCO
(Lin et al. 2014) to form the pre-training data. In total, our
pre-training corpus consists of about 5.8M image-text pairs.
Evaluation Datasets and Metrics. We evaluate the pro-
posed method on the COCO caption of Karpathy split (Lin
et al. 2014) and nocaps validation dataset (Agrawal et al.
2019). To evaluate the quality of the generated captions, we
use standard metrics in the image captioning task, includ-
ing BLEU@4 (Papineni et al. 2002), METEOR (Banerjee

and Lavie 2005), CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015), and SPICE (Anderson et al. 2016). In the cap-
tioning stage, beam search (beam size = 5) is adopted in
all experiments and the maximum generation length is re-
stricted to 20 words.

4.2 Implementation Details
Visual Encoder. We take the ResNet-50 backbone from the
CLIP model (Radford et al. 2021) as the visual feature ex-
tractor, whose parameters are frozen in both pre-training and
fine-tuning stages. The input image resolution is 224× 224.
Visual Concept Extractor. We follow the tiny YOLOv5n
(Ultralytics 2020) and its default settings to train a binary
(foreground-background) object detector. This tiny detector
is trained using Visual Genome dataset (Krishna et al. 2017),
where all the object bounding boxes are treated as the fore-
ground annotations. After obtaining the foreground object
detector, we train the alignment module using the region-
level CLIP features and textual embeddings from the Visual
Genome dataset. This alignment module only contains two
linear blocks (2048× 1024 and 1024× 1024) and is trained
for 60 epochs with a learning rate of 1× 10−5.
Cross-modal Modulator. The cross-modal modulator con-
tains two sequential linear blocks with sizes of 312×39 and
39 × 2048. The token embedding layer in this modulator
shares weights with the embedding layer in TinyBERT.
Cross-modal Fusion Model. For the TinyBERT, we initial-
ize it with the pre-trained weights (Jiao et al. 2019). The
visual concepts, as well as the caption words, are tokenized
and projected via an embedding layer before being fed to
the TinyBERT. The modulated visual embeddings are com-
pressed via the 1× 1 linear block to match the TinyBERT’s
embedding dimension. In the pre-training stage, the fusion
model is trained 1.0M steps with a learning rate of 5× 10−5

and batch size of 512. In the fine-tuning stage, the fusion
model is trained 120 epochs with a learning rate of 3×10−5.
Except for the TinyBERT, we also train large fusion models
BERTbase (Devlin et al. 2018) following the above steps.

4.3 Ablation Study
Model Pre-training. It has been well recognized that model
pre-training on large-scale image-text corpus benefits the
image captioning. As shown in Table 1, for the student
model with limited capacity, model pre-training significantly
improves the performance by 8.0 CIDEr score.
Visual Concept Extractor. The proposed visual concept
extractor provides valuable clues for image captioning via
an efficient image-text retrieval manner. As shown in Ta-
ble 1, for the student model, the visual concept extractor
improves the captioning performance by 3.4 CIDEr score
on the COCO dataset. This mechanism also improves the
strong teacher model by 3.7 CIDEr score.
Cross-modal Modulator. The cross-modal modulator takes
advantage of the retrieved visual concepts to modulate the
raw CLIP features. As shown in Table 1, based on the stu-
dent model with a visual concept extractor, the proposed
cross-modal modulator further improves the captioning per-
formance by 1.8 CIDEr score. This tiny block promotes the
strong teacher model by 2.1 CIDEr score.



Student Pre-training Concept Modulator B@4 M C S
X 32.1 26.9 103.6 19.9
X X 33.6 27.7 111.6 20.8
X X X 34.3 28.3 115.0 21.3
X X X X 34.9 28.9 116.8 21.9

Teacher Pre-training Concept Modulator B@4 M C S
X 34.2 28.3 113.8 21.2
X X 36.2 29.0 120.5 22.1
X X X 37.0 29.6 124.2 23.5
X X X X 37.5 29.9 126.3 24.3

Table 1: Ablative study of the proposed LightCap. To better
investigate the performance of each component, the student
model does not employ any knowledge distillation and uses
a single head model. The evaluation metrics are BLEU@4
(B@4), METEOR (M), CIDEr (C), and SPICE (S) scores on
the COCO-caption Karpathy test split (Lin et al. 2014).

Pre-training Stage Fine-tuning Stage Ensemble COCO test
Atten&Rep Caption Concept Atten&Rep Caption Distill B@4 C

34.9 116.8
X 35.2 117.6
X X 35.6 119.6
X X X 36.2 120.8
X X X X 36.4 121.9
X X X X 36.8 123.4
X X X X X 37.1 124.1
X X X X X X 37.4 125.8

Table 2: Ablative study of the proposed LightCap method
using different distillation techniques. “Atten&Rep”, “Cap-
tion”, and “Concept” denote the knowledge distillations on
attention weight and hidden representation, token probabil-
ity, and concept probability, respectively. Finally, we adopt
the ensemble head block and leverage the ensemble distilla-
tion to optimize the overall model.

Sequential Model Distillation. In Table 2, we ablate the
model knowledge distillation (KD) techniques in our ap-
proach. First, we investigate KD in the pre-training stage in
Table 2 (top). In these experiments, we only adopt the stan-
dard cross-entropy optimization without any KD in the fine-
tuning stage. In the pre-training stage, the “attention & rep-
resentation distillation” improves 0.8 CIDEr score, and the
distillation of output token probability improves 2.0 CIDEr
score. Considering the characteristic of cross-modal train-
ing, we further propose to distill the soft prediction of the
anchor words (i.e., visual concepts), which brings an addi-
tional 1.2 CIDEr gain. This indicates the concept distillation
facilitates the cross-modal alignment.

Next, we investigate KD in the model fine-tuning stage.
As shown in Table 2, based on the distilled fusion model
from the pre-training stage, in the fine-tuning stage, “atten-
tion & representation distillation” and “output token dis-
tillation” further improve 1.1 CIDEr and 2.6 CIDEr, re-
spectively. Combining the above KD techniques achieves
the best result of 3.3 CIDEr gain. Finally, by virtue of the
model distillation in both pre-training and fine-tuning, our

Img. Encoder Concept Extractor Modulator Fusion Total
Model ResNet50 YOLOv5n 2 FC TinyBERT4 -
Params (M) 23.5M 1.9M 9.4×10−2M 14.5M 39.9M
Size (MB) 56.5MB 7.6MB 0.4MB 58.0MB 112.5MB
FLOPs (G) 4.1G 4.5G 1.9×10−4G 1.2G 9.8G

Table 3: Illustration of model details including number of
parameters (in M), model size (in MB), and computational
complexity (FLOPs, in G) of the proposed LightCap.

lightweight student model achieves a promising captioning
performance of 37.1 BLEU@4 and 124.1 CIDEr, and even
matches the strong teacher model (i.e., 37.5 BLUE@4 and
126.3 CIDEr in Table 1).
Ensemble Model Distillation. The above experiments are
based on the single head setting. Actually, our model adopts
the ensemble head for superior performance. To encourage
the prediction diversity, we prepare three teachers to indi-
vidually distill these heads. As shown in Table 2, ensemble
head module and ensemble KD improve 1.7 CIDEr.

4.4 Inference on the Mobile Device
Table 3 exhibits the model FLOPs and parameters of each
block in the LightCap. Note that the ResNet50 backbone in
CLIP adopts the half-precision model training and thus the
model storage size of the visual encoder is 56.5MB. Overall,
our LightCap consumes a total storage space of 112.5MB,
which is affordable for most mobile devices.

Then, we test the inference latency of LightCap model on
Huawei P40 smartphone with a Kirin 990 chip. To purely in-
vestigate the model inference speed, we set the beam search
size to 1. It merely takes about 188ms for our light model
to process a single image on the CPU from mobile devices,
which meets the real-world efficiency requirements.

4.5 State-of-the-art Comparison
Comparison on Model Size and Efficiency. In Table 4,
we compare our LightCap with the state-of-the-art caption-
ing methods in terms of model size and inference efficiency
in FLOPs. Most existing pre-training methods such as VLP
(Zhou et al. 2020), Oscar (Li et al. 2020b), and UNIMO (Li
et al. 2020a) use the Faster R-CNN as the feature extractor
and a BERTbase as the fusion model, yielding about 173M
parameters and about 800G FLOPs. It is worth noting that
the current performance leaders such as VinVL (Zhang et al.
2021a) and LEMON (Hu et al. 2021a) contain a huge FLOPs
of more than 1000G. As illustrated in Section 4.4, the overall
FLOPs of our LightCap is only 9.8G. Consequently, com-
pared with the recent popular image captioners, our Light-
Cap saves more than 98% of the FLOPs.

To the best of our knowledge, DistillVLM (Fang et al.
2021b) and MiniVLM (Wang et al. 2020a) are the rep-
resentative lightweight image captioners in the literature.
These methods design a tiny object detector called Eff-DET
based on the EfficientNet (Tan and Le 2019). Neverthe-
less, their fusion model (i.e., MiniLM (Wang et al. 2020b))
is still much larger than our TinyBERT4. As discussed in
MiniVLM, changing the fusion model from MiniLM to a



Method
Image Encoder Fusion Model

Model Params FLOPs Model Params FLOPs
VinVLB, LEMONB ResNeXt152 141.2M 1017.2G BERTbase 109M 22.5G
OscarB, VLPB F-RCNN101 63.8M 767.0G BERTbase 109M 22.5G
ViTCAP, BLIPB ViTB 86.4M 55.5G BERTbase 109M 22.5G
DistillVLM, MiniVLM Eff-DET 7.5M 4.4G MiniLM 33M 8.3G
LightCap (Ours) ResNet50 23.5M 4.1G TinyBERT4 14.5M 1.2G

Table 4: Comparison of different captioning methods in
terms of the model structure, inference speed in FLOPs (in
G), number of parameters (in M).

Method
Cross-Entropy CIDEr Optimization

B@4 M C S B@4 M C S
w/o Pre-training

BUTD (Anderson et al. 2018) 36.2 27.0 113.5 20.3 36.3 27.7 120.1 21.4
LBPF (Qin et al. 2019) 37.4 28.1 116.4 21.2 38.3 28.5 127.6 22.0
AoANet (Huang et al. 2019) 37.2 28.4 119.8 21.3 38.9 29.2 129.8 22.4
X-LAN (Pan et al. 2020) 38.2 28.8 122.0 21.9 39.5 29.5 132.0 23.4
RSTNet (Zhang et al. 2021b) - - - - 39.3 29.4 133.3 23.0
DLCT (Luo et al. 2021) - - - - 39.8 29.5 133.8 23.0
Normal model design

VLPB (Zhou et al. 2020) 36.5 28.4 116.9 21.2 39.5 29.3 129.3 23.2
OscarB (Li et al. 2020b) 36.5 30.3 123.7 23.1 40.5 29.7 137.6 22.8
UNIMOB (Li et al. 2020a) 38.8 - 124.4 - - - - -
ViTCAP (Fang et al. 2021a) 36.3 29.3 125.2 22.6 41.2 30.1 138.1 24.1
VinVLB (Zhang et al. 2021a) 38.2 30.3 129.3 23.6 40.9 30.9 140.4 25.1
LEMONB (Hu et al. 2021a) 40.3 30.2 133.3 23.3 41.6 31.0 142.7 25.1
BLIPB (Li et al. 2022) 39.7 - 133.3 23.3 - - - -
Light model design

E2E-VLP (Xu et al. 2021) 36.2 - 117.3 - - - - -
MiniVLM (Wang et al. 2020a) 35.6 28.6 119.8 21.6 39.2 29.7 131.7 23.5
DistillVLM (Fang et al. 2021b) 35.6 28.7 120.8 22.1 - - - -
LightCap (Ours) 37.4 29.9 125.8 22.6 40.1 29.9 136.6 24.2

Table 5: Performance comparisons on the COCO Karpathy
test split (Lin et al. 2014).

TinyBERT4, the captioning performance will drop sharply
(about 10 CIDEr). Thanks to our designed concept extractor,
cross-modal modulator, and ensemble head, a lightweight
TinyBERT4 also works well in our framework.
Evaluation on COCO. In Table 5, we present the perfor-
mance of state-of-the-art captioning methods on the COCO
Karpathy test split (Karpathy and Fei-Fei 2015). These ap-
proaches are generally trained with the cross-entropy loss
and further optimized with CIDEr as a reinforcement learn-
ing reward. Previous captioners without model pre-training
such as BUTD, AoANet, and X-LAN mostly use the Faster
R-CNN as the visual feature extractor. The proposed Light-
Cap outperforms all previous pretraining-free algorithms.

Recent “pre-training then fine-tuning” methods typically
choose the BERT model as the cross-modal fusion model.
These methods struggle to achieve a fast inference speed
with the large visual backbone and the heavyweight BERT
model. Using similar pre-training data and the same cross-
entropy optimization, our LightCap (125.8 CIDEr) is supe-
rior to the heavyweight OscarB (123.7 CIDEr) and UNIMOB
(124.4 CIDEr). Compared with other lightweight captioning

Method
Out-of-domain Overall
C S C S

BUTD (Anderson et al. 2018) 31.3 8.3 55.3 10.1
BUTD (Anderson et al. 2018) + CBS 66.4 9.7 73.1 11.1
OscarB (Li et al. 2020b) 45.3 9.7 63.8 11.2
OscarB (Li et al. 2020b) + CBS 77.6 10.6 81.1 11.7
VIVOB (Hu et al. 2021b) 71.1 10.6 81.5 12.2
VIVOB (Hu et al. 2021b) + CBS 87.5 11.5 88.3 12.4
VinVLB (Zhang et al. 2021a) + CBS 87.4 11.6 90.9 12.8
ViTCAP (Fang et al. 2021a) 78.1 11.9 89.2 12.7
ViTCAP (Fang et al. 2021a) + CBS 95.4 12.7 93.8 13.0
SimVLMB (Wang et al. 2021) (w/ pre-train) - - 94.8 13.1
LEMONB (Hu et al. 2021a) 62.6 10.6 79.0 12.3
LEMONB (Hu et al. 2021a) (w/ pre-train) 107.9 13.1 106.8 14.1
BLIPB (Li et al. 2022) (w/ pre-train) 111.5 14.2 109.6 14.7
Human Performance 95.7 14.0 87.1 14.2
LightCap (Ours) 76.5 11.2 85.1 12.3
LightCap (Ours) + CBS 90.5 11.5 90.8 12.8

Table 6: Performance comparisons on the nocaps validation
split (Agrawal et al. 2019). We report the results of both
without and with constrained beam search (CBS) decoding.

methods such as MiniVLM and DistillVLM, our LightCap
retains fewer parameters and FLOPs, but surpasses them by
a notable margin of about 5 CIDEr score. Note that BLIP
and LEMON algorithms collect large-scale high-quality pre-
training datasets containing 129 and 200 million image-text
pairs (more than 20× larger than ours) for pre-training, re-
spectively. We believe that the proposed LightCap can be
further improved by involving more pre-training data, which
leaves as our future work.
Evaluation on Nocaps. Nocaps benchmark (Agrawal et al.
2019) contains 15,100 images collected from OpenImages
(Shao et al. 2019). We evaluate the proposed method on the
nocaps dataset to assess the model generalizability. Due to
the limited space, we only present the out-of-domain and
overall performance in Table 6. Following the protocol of
this benchmark, we merely train the LightCap model on the
COCO-caption without additional pre-training. Our caption-
ing model is much smaller than all the comparison meth-
ods such as VIVO and ViTCap. It is also worth mentioning
that our method surpasses the human CIDEr score and even
slightly outperforms the strong VinVL method in the out-of-
domain, which can be largely contributed to the representa-
tional power of the CLIP feature and our designed concept
extractor to retrieve novel concepts.

5 Conclusion
In this paper, we propose a lightweight image captioning ap-
proach for resource-limited devices. To unveil the potential
of a capacity-limited tiny model, we design a visual concept
extractor, a cross-modal modulator, and an ensemble head to
improve the captioning quality. By virtue of the sequential
knowledge distillation and ensemble distillation, our Light-
Cap exhibits competitive performance under a limited model
capacity. Extensive experiments verify the super-balanced
performance and efficiency of the proposed LightCap.
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A Implementation Details
A.1 Training Details
In the pre-training stage, the randomly initialized teacher
models (BERTbase (Devlin et al. 2018)) are trained 1.0M
steps with a learning rate of 5× 10−5 and batch size of 512.
We use AdamW optimizer (Loshchilov and Hutter 2017)
with β1 = 0.9, β2 = 0.999, and weight decay of 1 × 10−2

to train the teacher models. Then, we leverage the pre-
trained teacher models to jointly distill the student model
in the same training settings, e.g., 1.0M steps, learning rate
5 × 10−5 and batch size 512. In the fine-tuning stage, the
teacher models are trained 120 epochs with a learning rate
of 3 × 10−5. We empirically test 1, 2, 3, and 5 heads. We
observe that two heads can obviously outperform a single
head, but the performance tends to be saturated after 3 heads.
Thus, we empirically set the head number to 3. We utilize
three strong teacher models to distill the student model us-
ing the same settings (e.g., AdamW optimizer, learning rate,
and batch size). The temperature τ in the KD process is set
to 1. The knowledge distillation on attentions and hidden
states is conducted for 60 epochs, and the distillation on to-
ken probability is conducted for another 60 epochs. Instead
of “training then distillation”, in the training stage, we com-
bine the training loss and distillation loss to jointly train and
distill the student model to save the training cost.

As for the visual concept number, we empirically setK =
20 to select top-K concepts for efficient cross-modal fusion.
We observe that the performance will slightly drop when the
concept number is less than 15. Our visual concept extractor
is trained on the VG dataset (Krishna et al. 2017), which is
widely used in the image captioning task.

A.2 Evaluation on the Mobile Device
In this work, we test the inference latency of LightCap
model on the mobile phone Huawei P40. The testing chip
on Huawei P40 mobile phone is Kirin 9901. The detailed in-
ference speeds of the components in LightCap are shown in
Table 7. To purely investigate the model inference speed,
we set the beam search size to 1. The memory usage is
257 MB on the mobile phone. It merely takes about 188ms
for our light model to process a single image on the CPU
from mobile devices, which meets the real-world efficiency
requirements. It is well recognized that leveraging the NPU
or GPU on mobile devices can achieve a higher inference
speed, while not all the mobile devices are equipped with a
strong chip. Consequently, we utilize the CPU in Kirin 990
to test our method (188ms per image). The inference latency
on the PC with a Titan X GPU is about 90ms.

B Visualization Results
B.1 Visualization of Visual Concept Extractor
We visualize the image concept retrieval results in Figure 4.
In the second column, we exhibit the foreground detection

1https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-
chips/Kirin-990

Table 7: Inference latency of the proposed LightCap on the
CPU device.

Image Concept BERT Encoding BERT Decoding
Total

Encoding Extraction (Img+Concept) (Caption)
Time 110.1ms 20.0ms 11.4ms 3.8ms×12 (caption length) 188.3ms

results of the tiny detector YOLOv5n. Although this detec-
tor is relatively weak and fails to outperform the state-of-the-
art two-stage detection methods, it is extremely light with
only 1.9M parameters. Besides, accurate bounding boxes are
not necessary for our framework. Based on the roughly pre-
dicted foreground ROIs, we focus on retrieving visual con-
cepts of the image. As shown in the third column, our visual
concept extractor is able to predict accurate and dense object
tags to form the image concept.

Huawei Proprietary - Restricted Distribution2 Figure 4: From left to right: input image, foreground detec-
tion results, and concept retrieval results. All the testing im-
ages are from COCO dataset (Lin et al. 2014).

B.2 Visualization of Cross-modal Modulator
In Figure 5, we further visualize the channel attentions of
the retrieved visual concepts. For the given image in Fig-
ure 5, the first three visual concepts are Dessert, Cake,
and Spoon. These visual concepts are projected to the chan-
nel attentions to modulate the raw CLIP features. As shown

https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990


Huawei Proprietary - Restricted Distribution2

spoon handle cake table cake plate blade 
plate plate bowl plate water pan handle 
plate container pot knife rice bowl

cake spoon table plate blade water pan 
handle container pot knife rice bowl

spoon spoon table decoration plate napkin 
wall stem dessert glass pie plate whipped 
cream cake dish onion plate spoon plate 
handle saucer glass plate

dessert cream cake spoon table decoration 
plate stem glass pie dish saucer knife

Predicted Visual Concepts:  dessert  cake  spoon  cream  plate  

table  decoration  glass  pie  dish  saucer  knife

Predicted Caption:  A white plate with a piece of cake on a table.

GT1: A beautiful dessert waiting to be shared by two people

GT2: There is a piece of cake on a plate with decorations on it.

Figure 5: In the top figure, we show the predicted image caption, ground truth (GT) captions, and our predicted visual concepts.
In the bottom figure, we exhibit the channel attention weights of the first three concepts (i.e., Dessert, Cake, and Spoon).

Huawei Proprietary - Restricted Distribution2

A man riding a motorcycle 

down a dirt road.
A woman sitting at a table 

with a plate of food.
A woman riding a bike down 

a street next to a train.

A kitchen with a sink and a 

window

a wooden table topped with 
lots of wooden spoonsA man riding a dirt motor 

bike on a dirt road.
A woman sitting at a table 

eating a bowl of food.

A man riding a bike next to a 

red train
A kitchen with a sink and a 
window

a bunch of wooden spoons and 
bowls on a wooden tableA man with a red helmet on a 

small moped on a dirt road.

A young girl inhales with the 

intent of blowing out a candle.

A man on a bicycle riding 

next to a train

Oscar

Ours

GT1

Man riding a motor bike on a 

dirt road on the countryside.
A young girl is preparing to 

blow out her candle.

A red and white train and a 

man riding a bicycle
GT2

A kitchen with a sink, a

dishwasher and a window

A kitchen has the windows

open plaid curtains

A kitchen with two windows 

and two metal sinks

Figure 6: Uncurated image captioning examples of the first four images in COCO Karpathy test split (Karpathy and Fei-Fei
2015), coupled with the correspondence ground truth (GT) sentences.

in the bottom figures in Figure 5, the activated channels are
sparse (i.e., only a few channels yield the high attention val-
ues of more than 0.8) and most channel weights are below
0.5. This verifies our assumption that the raw CLIP features
are redundant in the channel dimension. Besides, the chan-
nel attentions from Dessert and Cake are similar, poten-
tially due to their high similarity in the semantic space. How-
ever, the attention weight generated by Spoon is quite dif-
ferent from the attentions of Dessert and Cake. It is well
recognized that different feature channels represent certain
semantics, and our approach is able to activate the informa-
tive channels using the retrieved concepts for effective image
captioning.

B.3 Qualitative Evaluation
Finally, we exhibit the captioning results of our approach on
the COCO-caption dataset (Karpathy and Fei-Fei 2015) in
Figure 6, coupled with ground truth (GT) sentences. Figure 6

also showcases the results of the state-of-the-art OscarB
method (Li et al. 2020b). Overall, on these uncurated im-
ages from the COCO Karpathy test set, our LightCap gen-
erates accurate captions and is comparable with the strong
OscarB. The proposed approach even yields more accurate
captions than OscarB in the third picture, where OscarB pre-
dicts woman instead of man. It should be noted that such
a robust model achieves promising results by retaining only
2% FLOPs of the current state-of-the-art captioners.

C Results on Nocaps

Due to the limited space, we only exhibit “out-of-domain”
and “overall” comparison results on the Nocaps dataset
(Agrawal et al. 2019) in the main paper. In Table 8 of this
supplementary material, we show the complete results in-
cluding “in-domain”, “near-domain”, “out-of-domain”, and
“overall” performance.



Method
In-domain Near-domain Out-of-domain Overall
C S C S C S C S

BUTD (Anderson et al. 2018) 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1
BUTD (Anderson et al. 2018) + CBS 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1
OscarB (Li et al. 2020b) 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2
OscarB (Li et al. 2020b) + CBS 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7
VIVOB (Hu et al. 2021b) 88.8 12.9 83.2 12.6 71.1 10.6 81.5 12.2
VIVOB (Hu et al. 2021b) + CBS 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4
VinVLB (Zhang et al. 2021a) + CBS 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8
ViTCAP (Fang et al. 2021a) 99.3 13.2 90.4 12.9 78.1 11.9 89.2 12.7
ViTCAP (Fang et al. 2021a) + CBS 98.7 13.3 92.3 13.3 95.4 12.7 93.8 13.0
SimVLMB (Wang et al. 2021) (w/ pre-train) - - - - - - 94.8 13.1
LEMONB (Hu et al. 2021a) 91.4 13.3 81.4 12.5 62.6 10.6 79.0 12.3
LEMONB (Hu et al. 2021a) (w/ pre-train) 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1
BLIPB (Li et al. 2022) (w/ pre-train) 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7
Human Performance 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2
LightCap (Ours) 95.4 13.2 85.5 12.3 76.5 11.2 85.1 12.3
LightCap (Ours) + CBS 95.8 13.4 88.7 12.8 90.5 11.5 90.8 12.8

Table 8: Performance comparisons on the Nocaps validation split (Agrawal et al. 2019), where C and S denote CIDEr and
SPICE scores. We compare our method with previous state-of-the-art approaches at “in-domain”, “near-domain”, and “out-of-
domain”. We report the results of both without and with constrained beam search (CBS) decoding.

Method
Model Architecture Pre-training Cross-Entropy

Image Encoder Fusion Model Data B@4 M C S
Normal model design

VLPB (Zhou et al. 2020) F-RCNN101 BERTbase 4M 36.5 28.4 116.9 21.2
OscarB (Li et al. 2020b) F-RCNN101 BERTbase 7M 36.5 30.3 123.7 23.1
UNIMOB (Li et al. 2020a) F-RCNN101 BERTbase 9M 38.8 - 124.4 -
ViTCAP (Fang et al. 2021a) ViTB BERTbase 10M 36.3 29.3 125.2 22.6
VinVLB (Zhang et al. 2021a) ResNeXt152 BERTbase 9M 38.2 30.3 129.3 23.6
LEMONB (Hu et al. 2021a) ResNeXt152 BERTbase 200M 40.3 30.2 133.3 23.3
BLIPB (Li et al. 2022) ViTB BERTbase 129M 39.7 - 133.3 23.3
SimVLMB (Wang et al. 2021) ResNet&ViTB Transformer 1.8B 39.0 32.9 134.8 24.0
Light model design

E2E-VLP (Xu et al. 2021) ResNet50 Transformer 6M 36.2 - 117.3 -
MiniVLM (Wang et al. 2020a) Eff-DET MiniLM 14M 35.6 28.6 119.8 21.6
DistillVLM (Fang et al. 2021b) Eff-DET MiniLM 7M 35.6 28.7 120.8 22.1
LightCap (Ours) ResNet50 TinyBERT4 6M 37.4 29.9 125.8 22.6

Table 9: Performance comparisons on the COCO-caption Karpathy test split (Lin et al. 2014), where B@4, M, C, S denote
BLEU@4, METEOR, CIDEr, and SPICE scores.

D Limitations and Future Work
Despite the super-balanced performance and efficiency, the
proposed framework still has some limitations:

(1) Training a More Efficient CLIP. The main compu-
tational cost of our work lies in the visual backbone (i.e.,
ResNet-50). In the future, we plan to train an EfficientNet-
based CLIP model to further reduce the feature extraction
latency of the visual encoder.

(2) End-to-end Training. Currently, we freeze the model
parameters of the CLIP ResNet-50 backbone. We observe
that end-to-end training of the visual backbone will degrade
the performance, potentially due to the limited training data
in the image captioning domain. In the future, we intend to
include more data to facilitate the joint training of the visual
backbone and fusion model.

(3) Adding More Pre-training Data. Although our ap-
proach adopts the cross-modal pre-training, as shown in
Table 9, our pre-training data is much less than the re-
cent LEMON (Hu et al. 2021a), BLIP (Li et al. 2022), and
SimVLM (Wang et al. 2021). In the future, we plan to in-
volve more pre-training data to boost the captioning quality.
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