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Reliable Re-Detection for Long-Term Tracking
Ning Wang, Wengang Zhou, and Houqiang Li , Senior Member, IEEE

Abstract— In long-term object tracking, severe occlusion and
deformation could happen to the targets. Due to the accumulation
and propagation of estimation errors, even a few frames of
full occlusion in a video sequence could lead to the failure
of the tracking. Recently, correlation filter-based trackers have
received lots of attention and gained great success in real-
time tracking. However, most of them ignore the reliability of
the tracked results and lack an effective mechanism to refine
the unreliable results. To cope with these issues, in this paper,
we propose a long-term tracking framework composed of both
tracking-by-detection and re-detection modules. The tracking-
by-detection part is built on the discriminative correlation filter
(DCF) integrated with a color-based model. The re-detection
module filters a large number of detection candidates and refines
the tracking results. With the proposed re-detection refinement,
detected results in each frame were re-evaluated and re-detection
is carried out when necessary. Besides, the reliability estimation
in the re-detection module also helps adaptively update the object
detector and keep it from corruption. The proposed re-detection
module can be integrated into correlation filter-based trackers
to consistently boost the performance. Extensive experiments on
the OTB-2015, Temple-Color, and VOT-2015 benchmarks show
that the proposed method performs favorably against the state-
of-the-art methods while still running faster than 40 f/s.

Index Terms— Long-term tracking, tracking-by-detection,
re-detection, feature combination.

I. INTRODUCTION

OBJECT tracking is a fundamental task in computer
vision. Although significant progress has been made in

the past decades, there still remain many challenges [1]. In this
article, we focus on long-term tracking, where the target may
go through heavy occlusion, significant appearance changes
and even moving out-of-view.

In recent years, tracking-by-detection has become one of
the most successful paradigms for object tracking [2]–[4]. Fol-
lowing such a paradigm, a tracker identifies objects through a
detector and updates it over time to compensate the appearance
and scale changes. In spite of the state-of-the-art performance,
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existing tracking-by-detection approaches struggle when their
detectors are misled by the corrupted results.

In a long-term tracking, when there appears heavy occlusion
or significant appearance change, the result of the detection
model may be unreliable and the model update is prone to the
error propagation. Therefore, the reliability of the detection
result must be carefully checked, which will guide the update
of the detection model. Limited by few training data and prior
knowledge, additional information is expected to enhance the
tracker. The process of model update is of vital importance but
suffers the risk of drifting to the background. Some algorithms
incorporate the template in the first frame or prior knowledge
for online updating [5], [6]. However, relying on a fixed model
or prior restricts the detector’s capability to handle appearance
and scale changes. Recent part-based methods [7], [8] have
been studied actively due to their robustness to appearance
variations and partial occlusion. However, these methods have
difficulty in handling full occlusion and objects with a large
visually homogeneous region. Other algorithms try to enhance
the robustness by combining multiple features but the impact
of poor updates still remains [9], [10].

For long-term tracking, another common issue in a
tracking-by-detection tracker is how to identify a better
result when the current tracking result is unreliable, and
thus an effective re-detection module is necessary. Besides,
the re-detection technique is also highly related to the
practical applications with increasing focus, such as person
re-identification [11], [12] and multi-object tracking (MOT)
[13]–[15]. However, many long-term trackers heavily depend
on the detection model to avoid the training set contamination,
and thus are incapable of re-detecting objects [16], [17]. Other
algorithms with re-detection model mostly ignore the quality
of re-detected objects, which may corrupt the detector further
[18], [19]. The reliability of re-detected objects is crucial for
the detection model to retain its discriminative power in the
long-term tracking, while existing long-term trackers fail to
fully explore such reliability problem and usually trust their re-
detected targets just like a detector always trusts its own result.
Furthermore, in many long-term tracking algorithms [17], [20],
the incorporation of multiple trackers leads to an obvious
reduction in tracking speed. Due to the efficiency requirement
imposed by many practical applications, the capability of real-
time processing is also essential for tracking algorithms.

As one of the state-of-the-art tracking-by-detection
methods, Discriminative Correlation Filter (DCF) based
trackers [4], [21] have gained sustained attention thanks
to their impressive robustness and speed. In DCF based
trackers, a region of interest (ROI) is usually cropped at the
position of the target in the previous frame and with 2.5 times
the size of the target itself. However, the detection range
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Fig. 1. Illustration of tracking failure in the videos of DragonBaby (top) and
Railwaystation (bottom). Yellow and green boxes denote the groundtruth
targets and the searching areas in DCF based trackers, respectively. Searching
areas are usually located at the position of the target in the previous frame.
The tracker produces low confidence levels in case of motion blur, heavy
occlusion and out-of-view.

sometimes restricts the tracking capability of DCF based
trackers (Fig. 1). By penalizing filter coefficients outside
object boundaries, the recent SRDCF algorithm [22] increases
the detection range and the performance at the same time,
but the real-time capability is heavily restricted.

In this paper, to address the above issues, we are dedicated
to the following problem: how to identify the unreliable
tracking results to prevent the model update of the detector
from corruption and how to re-detect the target when unreli-
able result appears. We propose a long-term tracker, which
is composed of both tracking-by-detection and re-detection
modules. Inspired by the excellent performance of Staple [23]
which combines HOG [24] and color features and still leaves
much room for improvement (Section IV-C), we take it as a
baseline and make use of these features for re-detection to
explore the potential of DCF based trackers. The core module
of our approach is denoted as a re-detection switch, which
estimates the occurrence of contamination with color and
HOG features, and makes decision on whether it is necessary
to perform re-detection and whether or not to replace the
original target with the re-detected object. We apply an recall-
dominated “unreliability check” criterion in the re-detection
switch to bring potential contaminated detection results into
the re-detection process. Further, we set a precision-dominated
“reliability check” criterion in the re-detection switch to ensure
the quality of the re-detected result before substituting it to
the detected unreliable result. Based the measurement on the
detection reliability, we adaptively update the detection model.
The proposed approach is evaluated by extensive experiments
and compared with the state-of-the-art algorithms on three
large-scale benchmarks to demonstrate its favorable effective-
ness. It is notable that, our framework is ready to be integrated
into many DCF based algorithms to realize performance
improvement (ranging from 1.5%-10.2% in distance precision
and 3.1%-9.1% in overlap precision).

In the rest of the paper, related work is described in
Section II. The proposed method is elaborated in Section III.
After that, experiment and analysis are provided in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we discuss three categories of trackers
closely related to our algorithm: tracking-by-detection, cor-
relation tracking and long-term tracking.

A. Tracking-by-Detection

Tracking-by-detection methods [3], [25], [26] learn an initial
discriminative model (e.g., with a support vector machine
(SVM) [27], [28]) to detect the target. It typically consists
of two phases: tracking and learning. In the former phase,
the discriminative model is used to predict the object location,
while in the latter the new location is used to update the
detector. As a typical representative, TLD [29] decomposes
the tracking task into tracking, learning and detection. In TLD,
tracking and detection run simultaneously and mutually update
each other. Compressive tracking (CT) algorithm [2] extracts
features through compressing sensing and constructs classifier
using naive Bayes for target detection. Struck [3] uses a struc-
tured output formulation to learn and update the detector. The
multi-entropy minimisation (MEEM) tracker [30] maintains
a collection of snapshots and chooses the best prediction
from them based on the framework of SVM. In recent years,
tracking algorithm based on particle filter has been extensively
studied and different methods have been incorporated to
improve the robustness [25], [31]. Combinations of particle
filter with sparse representation [6], [32], [33] or correlation
filters [34] have demonstrated robust performance. Recently,
Zhang et al. [35] propose a circulant sparse tracker with
high efficiency. However, these tracking-by-detection methods
focus on short-term tracking tasks and usually performs poorly
in case of heavy occlusion and out-of-view.

B. Correlation Tracking

In DCF based trackers, a filter is trained through minimizing
a least-squares loss for all circular shifts of a training sample.
The target is tracked by correlating the filter over a region
of interest, and the location with the maximum response
indicates the new location of the target. Bolme et al. [21]
propose a tracking algorithm using minimum output sum
of squared error (MOSSE) filter. MOSSE tracker is compu-
tationally efficient with a speed of several hundred frames
per second. Heriques et al. exploit the circulant structure
of the training patches [36] and propose to use correlation
filter in a kernel space with HOG features to achieve better
performance [4]. Zhang et al. [37] propose a STC algorithm,
which incorporates context information into filter learning. The
DSST tracker [38] utilizes multi-scale correlation filters to
handle scale changes of the object. The SRDCF tracker [22]
alleviates the boundary effects by penalizing correlation filter
coefficients depending on spatial location, which has demon-
strated excellent performance. An improved version of SRDCF
is SRDCFdecon [39], which reduces the influence of corrupted
samples by computing a joint loss. Bertinetto et al. [23]
propose a Staple tracker which combines DCF and color-based
model to handle color changes and deformation while runs in
real-time. Recently, several methods use learned Convolutional
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Fig. 2. A system flowchart of the proposed tracking algorithm. The proposed algorithm consists of tracking-by-detection and re-detection process, denoted by
green arrow and orange arrow, respectively. After tracking-by-detection, an “unreliability check” criterion judges whether there needs a re-detection process.
If the re-detection process is adopted, a “reliability check” criterion judges whether the re-detected result can replace the originally detected result.

Neural Network (CNN) features [40], [41] rather than hand-
crafted features in correlation filters to boost the performance
further, like HCF [42] and DeepSRDCF [43]. It is worth
mentioning that HCF constructs multiple correlation filters on
hierarchical convolutional layers to capture both spatial details
and semantics, which demonstrates high accuracy. Different
from these DCF based methods, our framework focuses on the
reliability estimation of the results and re-detection refinement.

C. Long-Term Tracking

To handle the challenging factors in long-term tracking,
a self-paced learning scheme [16] is combined to the tracker in
which the target appearance can be learned by selecting trust-
worthy frames to avoid corrupting the training set. The multi-
store tracker (MUSTer) [20] maintains a short-term memory
for detecting and a long-term memory for outputing control.
In [17], a tracking-by-detection approach with occlusion and
motion reasoning is proposed to handle occlusion and motion
changes. However, both MUSTer [20] and [17] integrate multi-
ple trackers and need to evaluate them in every frame. Long-
term correlation tracker (LCT) [18] uses DCF for detection
as well as a random forest for re-detection and achieves
state-of-the-art results. Different from previous re-detection
approaches, our method makes full use of baseline tracker for
re-detection and does not need to incorporate extra features
or trackers. We aim to explore the potential of DCF based
trackers by designing a better searching strategy. In long-term
tracking, besides re-detection, another main task is identifying
the state (e.g., partial or full occlusion) of the object as well
as avoiding confusing updates. In [44], Wang et al. propose
an algorithm to track interacting and invisible targets using
intertwined flows. MUSTer predicts the state of the target by
counting the number of SIFT keypoints [45]; LCT considers
the maximum value of the correlation response map to judge
occlusion.

Different from algorithms mentioned above: (i) we check
the reliability of the target and update tracking model adap-
tively through multiple features; (ii) through an “unreliability
and reliability check” criterion, we can generate reliable track-
ing result; (iii) after a coarse localization, we add a dense
search additionally to achieve an accurate re-detection.

III. OUR PROPOSED APPROACH

In order to handle severe occlusion and significant appear-
ance changes in long-term tracking tasks, our approach is
composed of tracking-by-detection and re-detection modules.
The general framework of our method is depicted in Fig. 2.

A. Tracking by Detection

To track the object by detection, we make use of the DCF
model [4], [21] and the color histogram model [23], [46] to
generate the response maps, respectively. After that, we lin-
early integrate the two response maps and identify the object
location with the maximal response value.

1) Correlation Filter Response Generation: A typical cor-
relation tracker [4], [21] learns a discriminative classifier and
locates the target by searching for the maximum value of cor-
relation response map. The tracker based on correlation filter
is trained using an image patch x of size m × n. The training
image is centered around the target. All the circular shifts of
the patch xm,n(m, n) ∈ {0, 1, . . . , M − 1} × {0, 1, . . . , N − 1}
are generated as training samples with Gaussian function
label y(m, n) in terms of the shifted distance. Since a large
number of negative samples are employed by shifting the
image patch xm,n , the discriminative power of the classifier
is greatly enhanced. The classifier w is trained by minimizing
the regression error:

min
w

∑

m,n

‖φ(xm,n) · w − y(m, n)‖2 + λ‖w‖2, (1)
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where φ represents the mapping to a Hilbert space and λ is
a regularization parameter (λ ≥ 0). By employing a kernel
k(x, x

′
) = 〈φ(x), φ(x

′
)〉, the solution can be expressed as w =∑

m,n α(m, n)k(xm,n, x), where α is the dual variable of w and
it is defined by

α̂∗ = ŷ

k̂xx + λ
, (2)

where kxx denotes the vector whose i -th element is k(xi , x),
the hat symbol denotes the Discrete Fourier Transform (DFT)
of a vector (e.g., α̂ = F(α)) and α̂∗ is the complex-conjugate
of α̂. The simplest linear kernel function is applied to our

algorithm, k(x, x
′
) = g(x, x

′
) for some function g, and kxx

′ =
g(F−1(x̂ 	 x̂

′∗)).
In the tracking process, a patch z with the same size of x

is cropped out in the new frame. The response map of z is
calculated as follows,

fh = F−1((k̂xz)∗ 	 α̂), (3)

where 	 is the element-wise product and x is the learned target
appearance. To avoid the boundary effects during learning,
we apply Hann window to the signals [4]. The online update
is made as follows,

x̂t = (1 − ηh)x̂t−1 + ηh x̂
′
t ,

α̂t = (1 − ηh)α̂t−1 + ηh α̂
′
t , (4)

where ηh is the learning rate of HOG-based correlation filter
and t is the index of the current frame. To avoid the contamina-
tion of the trained filter, ηh in our framework is set adaptively,
which will be illustrated latter (Section III-D). We train two
models based on correlation filters from one single frame.
One is used for translation while the other is used for scale
estimation [38].

2) Color Histogram Response Generation: To handle defor-
mation and color changes in long-term tracking, we adopt a
color histogram model [23], [46] in the detector. For a single
image, the color histogram model should be learnt from a set
of rectangular patches x with their corresponding labels y,
including the correct position as a positive sample. Similar to
correlation filter, the histogram weight vector m can be trained
by minimizing the regression error:

min
m

∑

x

∥∥∥∥∥
∑

u∈R
mT ϕx(u) − y

∥∥∥∥∥

2

+ λ‖m‖2, (5)

where m is the histogram weight vector and ϕx(u) represents
the feature pixels of patch x in finite region R. Although
Eq. (5) has a similar expression form with Eq. (1), the his-
togram weight vector m cannot be learnt with circular shifts.
For an M-channel feature transform ϕ, the computation cost
will be unbearable with the increasing number of feature
channels.

Since the histogram score can be considered an average
vote, a linear regression can be applied to each pixel indepen-
dently over object (O) and its surrounding (S) regions [23].
Therefore, instead of taking Eq. (5), per-image loss based on

color histogram can be computed as follows,

min
m

1

|O|
∑

u∈O

∣∣∣mT ϕ(u) − 1
∣∣∣
2 + 1

|S|
∑

u∈S

∣∣∣mT ϕ(u)
∣∣∣
2
. (6)

The solution of the ridge regression problem above is:

m j = p j (O)

p j (O) + p j (S) + λ
. (7)

For each dimension j = 1, . . . , M , p j (R) is the j -th element
of the vector p. It represents the proportion of pixels in the
region R for which feature j is non-zero. After obtaining
the histogram weight vector, for a given image patch z,
we can compute the color per-pixel score map through m:
fc = mT ϕu∈z(u), and obtain the dense histogram response
map using an integral image [23]. The online update for color
histogram model is as follows,

pt (O) = (1 − ηc)pt−1(O) + ηcp
′
t (O),

pt (S) = (1 − ηc)pt−1(S) + ηcp
′
t (S), (8)

where ηc is the learning rate of color histogram model which
is also combined with our adaptive update strategy, pt (R) is
the vector of p j

t (R) for j = 1, . . . , M .
3) Target Localization: Both HOG-based correlation filter

model and color histogram model are capable of detecting the
object, and the combination of them in a dense translation
search enables greater robustness [23]. For each single frame,
after computing the correlation filter response map and color
histogram response map, the final response map is a linear
combination of them:

f (i) = ζ · f (i)
h + (1 − ζ ) · f (i)

c , (9)

where f (i)
h is the response map of i -th frame calculated

by HOG-based correlation filter, f (i)
c is the response map

calculated by color histogram and ζ is the weighting factor.
The position of the target in a coming frame is detected by
searching for the location with the maximal value of f (i).

B. Reliability Estimation

In the re-detection module, we first discuss how to utilize the
responses of HOG and color features to estimate the reliability
of the tracking results. Then, we propose a loose “unreliability
check” and a strict “reliability check” to generate the final
tracking result in the current frame.

For HOG-based correlation filter response map, the peak-
to-sidelobe ratio (PSR) can be computed to quantify the
sharpness of the correlation peak [21]. If the PSR value is low,
the correlation between the current frame and previous frames
is low. We define the PSR of correlation filter response map
as the score of HOG features:

S(i)
h = max( f (i)

h ) − μi

σi
, (10)

where f (i)
h is the i -th response map of HOG-based correlation

filter, μi and σi are the mean and standard deviation of the
response, respectively.
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Fig. 3. From left to right: input image, per-pixel score map based on color
histogram, HOG-based correlation response map (with a 3D visualization).
The red boxes denote the ground truth positions of the target. In (b), when
object is partially occluded, the color “area” percentage compared to the
ground truth target is lower as well as the PSR of the correlation response
map. In (c), when object is under full occlusion, the color score and HOG
score decrease significantly.

For a certain correlation filter, the PSR value fluctuates in
a certain extent and is much lower when unreliable tracking
result occurs. However, it is not suitable to pre-define a con-
stant threshold to judge the reliability of the current tracking.
Due to the uncertainty of tracking difficulty, the HOG scores
of the response maps may fluctuate at different values. For
example, when the PSR is lower than a certain threshold,
it means a failure in video A, while it may indicate a success
in another video B due to much more challenging factors
contained in B. So we consider the average score of the video
to estimate the reliability of the tracking results. We calculate
each frame’s HOG score and combine them into an ensemble
Ch = {S(2)

h , S(3)
h , . . . , S(i)

h }. We define the Mh as the mean
of the ensemble Ch . Moreover, we do not accept every Sh

into the ensemble through defining a small coefficient oh for
Mh . If S(i)

h < oh · Mh , we consider the result of i -th frame
performs poorly and discard the corresponding HOG score.
By considering the average score of the ensemble, the relia-
bility criterion of the HOG score is changed adaptively frame-
by-frame. A significant low Sh which satisfies S(i)

h < oh · Mh

usually means a certain extent occlusion or deformation.
For color information, we calculate per-pixel score map

based on color histogram in the first frame and sum all the
pixels inside the target area to obtain a color “area” (Fig. 3).
As there exists no occlusion for the object in the first frame,
the per-pixel score map is pure and take it as the comparison
criterion. Then for each single frame, we take the same step.
We define the percentage of color “area” as color score, which
is simple yet effective in practice:

S(i)
c =

∑
u mT ϕi (u)∑
u mT ϕ1(u)

. (11)

In Eq. (11), S(i)
c is the color score of i -th frame and denomi-

nator denotes the color “area” of the groundtruth frame. How-
ever, in some videos, there is more background in the bounding
box and color score Sc differs from video to video. Similar to
the HOG score, we calculate each frame’s color score and put
them into an ensemble Cc = {1, S(2)

c , S(3)
c , . . . , S(i)

c }. We define
Mc as the mean of the ensemble Cc. By defining a small
coefficient oc for Mc, we discard the significant low color
score which satisfies S(i)

c < oc · Mc.
We check the reliability of the tracking result in each frame.

A tracking result is regarded as unreliable, if the targets HOG
score Sh < oh · Mh or the targets color score Sc < oc · Mc

(“Unreliability Check” in Fig. 2). On the other hand, a tracking
result is likely to be very reliable if it satisfies Sh > τh ·Mh and
Sc > τc · Mc (“Reliability Check” in Fig. 2), where τ is a high
threshold compared with o. We launch the re-detection process
once the initial tracking result is found to be unreliable. If the
output of the re-detection is reliable, we substitute it to the
original unreliable detection target. Otherwise, we keep the
original one but reduce the learning rate for the model update.
An illustration of our strategy is shown in Fig. 4.

C. Re-Detection Module

In this section, we introduce how to re-detect the object
in our algorithm. We first coarsely locate the target with
efficiency based on a sparse coding scheme. Then, an accurate
localization approach is applied to refine the target location
by re-utilizing tracking-by-detection model. Finally, the reli-
ability estimation method described in Section III-B helps
switch the suitable result between tracking-by-detection and
re-detection.

To obtain reliable searching areas from a large amount
of ROI candidates, a simple sparse coding based method is
adopted to find a coarse location efficiently. In the tracking
process, we collect a template set D contains Np positive
templates D+ near the object (e.g., within a radius of a
few pixels) and Nn negative templates D− far away from
the object. If the current tracking-by-detection model results
in a bad solution (satisfies “unreliability check” criterion),
then we draw N candidates around the tracked result in the
previous frame using particle filter. For each candidate x , it is
represented by template set D = [D+ D−] with coefficients
α = [α+ α−] which is obtained by Eq. (12).

min
α

‖x − Dα‖2
2 + λ‖α‖1. (12)

A candidate with smaller reconstruction error using positive
template set D+ is more likely to be a target and vice versa.
Thus, by computing the reconstruction error of each candidate
using template D, we can predict the reliability Ri of the i -th
candidate roughly:

Ri = ‖xi − D−α−‖2
2 − ‖xi − D+α+‖2

2, (13)

where ‖xi −D−α−‖2
2 is the reconstruction error using negative

template set D− and α− is the corresponding coefficient vector,
and ‖xi − D+α+‖2

2 is computed in a similar way. For the
i -th candidate, higher Ri means its higher possibility of a
target. Although this method is not robust enough to re-detect
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Fig. 4. In the video J ogging (top), when the target (shown in red ground
truth box) is under occlusion, target re-detection (shown in yellow boxes) tries
to locate the true object, while some of them perform poorly in either HOG or
color information, others perform badly in both HOG and color information.
Video Girl2 (bottom) performs in a similar way. Our combination of HOG
and color features in “reliability check” ensures the reliability of re-detection.

the target, it provides holistic information of the target and
we can discard many useless candidates for efficiency. In our
algorithm, we discard 90% of the candidates through recon-
struction error, which predicts the location roughly and reduces
much computational cost in accurate location process. The rest
candidates will be exploited by particle filter for accurate target
localization as discussed in the following.

Candidate selection through particle filter can be regarded as
a discrete sampling process while the response map computed
by correlation filter and color histogram model searches loca-
tion densely. Thus, for the selected candidates, a bit larger
region (ROI) is cropped to search for an accurate location.
Finally, we compute the combined response map using Eq. (9)
for the selected candidates and the final confidence score is
defined as follows,

Ci = max( f (i)) · cos

(
γ

Wt + Ht
||L(i)

c − Lt ||
)

, (14)

where f (i) is the i -th candidate’s combined response map,
the second term is the distance score based on Euclidean
distance, Wt and Ht are the width and height of the target,
respectively, L(i)

c and Lt are the locations of i -th candidate
and the target in the last frame, the γ is a pre-defined distance
penalization parameter. We assume that a target with larger
size has a larger motion range, so the distance penalization is
closely related to the scale of the target.

The confidence score Ci in Eq. (14) considers multiple
target features as well as distance penalization, which can help
choose the best re-detected candidate. Similar to the tracking-
by-detection part, the position of the re-detected target is
determined by searching the maximal value of the best candi-
date’s response map. Finally, if the re-detected target satisfies
the “reliability check” criterion discussed in Section III-B,
we substitute it to the original detection result. Otherwise,

we keep the original detection result and update the model
adaptively.

D. Adaptive Template Update

With the reliability criterion, our tracking model is updated
using the reliable results. When the tracked target is regarded
as unreliable, the learning rate of color histogram model
ηc is set to zero to avoid the update of the sudden color
changes introduced by occlusion, illumination change or out-
of-view. Considering the correlation filter learns both target
and background information, we take full advantage of it by
a designed power function [47].

ηc =
{

P if satisfy “reliability check”,

0 otherwise,
(15)

ηh =
{

Q if satisfy “reliability check”,

ν(Sh/Mh )β Q otherwise,
(16)

where P and Q are constants, β is the power exponent of
the power function, ν ∈ [0, 1] is a penalization coefficient
which restricts the maximum value of the learning rate.
The designed power function maintains reliable samples and
penalizes samples with low scores severely.

As for positive and negative templates in coarse localiza-
tion process, When the current result satisfies the reliability
criterion, both of them are updated through particle filter to
adapt appearance changes of both target and background. The
outline of our method is summarized in Algorithm 1.

IV. EXPERIMENTS

A. Experiment Settings

In our experiment, the regularization parameter λ is set
to 10−3. Following Staple [23], the weighting factor ζ in
Eq. (9) is set to 0.3. In template set D defined in Eq. (12),
Np and Nn are set to 50 and 200, respectively. The positive
templates, negative templates and particles are all normalized
to the same size (20×20). For efficiency, only 50 particles are
used when re-detection model works and discard 90% of them
after coarse localization. In distance score defined in Eq. (14),
γ is set to π/9. As for learning rates, P and Q in Eq. (15)
and Eq. (16) are set to 0.01 and 0.02, respectively. In Eq. (16),
penalization coefficient ν is set to 0.8 and power exponent β
is set to 3.

As for the low threshold oh in “unreliability check”, a higher
oh will result in more frequent recall of the re-detection model
which will lead to low efficiency, while a lower oh means more
ignorance to the potential occlusion which may lead to low
accuracy. As for the high threshold τh in “reliability check”,
a higher τh means the re-detected true target may be ignored
due to a too strict criterion while a lower τh means the wrong
candidate may corrupt the detector due to a too loose criterion.
The corresponding thresholds of the color based confidence
score perform in a similar way. To make trade-off between
accuracy and efficiency, “unreliability check” thresholds are
oh = 0.6, oc = 0.7 and “reliability check” thresholds are
τh = 0.7, τc = 0.8.
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Algorithm 1: Proposed Tracking Algorithm
Input: Image I0, previous target state x0,
Output: Estimated object state xt = (xt , yt ), tracking-by-

detection model, template set.
1 for t = 2, 3, . . . , n do
2 //Tracking-by-detection;
3 Identify the searching window in frame t;
4 Compute the correlation response map and color

response map;
5 Estimate new state xt using Eq. (9) ;
6 //Re-detection;
7 Compute S(t)

h and S(t)
c of the current object;

8 //Unreliability check;
9 if (S(t)

h < oh · Mh) OR (S(t)
c < oc · Mc) then

10 Draw candidates in the previous target position
through particle filter;

11 Discard useless particles using Eq. (13);
12 Compute candidates’ confidences using Eq. (14) ;
13 Choose the best candidate ci and its state is xi ;
14 Compute S(i)

h , S(i)
c and distance score di of ci ;

15 //Reliability check;
16 if (S(i)

h ·di > τh · Mh ) AND (S(i)
c ·di > τc · Mc) then

17 //Replace original target ;
18 xt = xi ;
19 end
20 end
21 if (S(t)

h > τh · Mh ) AND (S(t)
c > τc · Mc) then

22 Update detector using Eq. (4) and Eq. (8) ;
23 Update positive and negative templates;
24 else
25 Reduce ηh and ηc using Eq. (15) and Eq. (16) ;
26 end
27 end

We use the same setting of parameters for all sequences on
OTB-2015 [48] and Temple-Color [49]. Our implementation
runs at about 45 frames per second (FPS) on a computer with
an Intel I7-4790K 4.00GHz CPU, 16GB RAM. Our source
code is available at: https://github.com/594422814/Reliable-
Re-detection-for-Long-term-Tracking.git.

We evaluate the proposed algorithm on OTB-2015 [48]
and Temple-Color [49] benchmarks with comparisons with
12 recent state-of-the-art trackers: TLD [29], Struck [3],
KCF [4], DSST [38], SAMF [10], MEEM [30], LCT [18],
HCF [42], SRDCF [22], SCT4 [50], Staple [23] and
SiamFc [51]. Besides, we also test our method on the
VOT-2015 dataset [52].

OTB-2015 contains 100 videos and Temple-Color consists
of 128 videos. All the tracking methods are evaluated by three
metrics: distance precision (DP) at a threshold of 20 pix-
els, overlap precision (OP) at an overlap threshold 0.5 and
center location error (CLE). For better performance measure,
we use overlap success plots over OTB-2015 and Temple-
Color datasets using one-pass evaluation (OPE) proposed
in [53].

TABLE I

THE PERFORMANCE OF OUR ALGORITHM WITH DIFFERENT SETTINGS
MEASURED USING MEAN DISTANCE PRECISION (DP) (%) AT A

THRESHOLD OF 20 PIXELS AND OVERLAP PRECISION (OP) (%)
AT AN OVERLAP THRESHOLD 0.5 ON THE OTB-2015 DATASET

TABLE II

THE PERFORMANCE OF OUR ALGORITHM USING DIFFERENT NUMBER

OF ROI FOR RE-DETECTION. ZERO REPRESENTS ONLY

ADAPTIVE UPDATE WITHOUT RE-DETECTION

B. Evaluation on Re-Detection

To justify the effectiveness of our re-detection framework,
we have studied different settings: only color features and only
HOG features in the “unreliability and reliability check” in
our framework as well as a tracker only updating detector
adaptively without re-detection module. We show the results
of different versions in Table I. Only a detection model
with adaptive update can be seen as an enhanced version
of Staple [23], which obtains a good performance but fails
to re-detect the target. No feature for re-detection means our
target reliability estimation is not applied, which just runs the
detector in multiple searching areas and selects the best among
them. It performs the worst because the tracker tends to drift to
similar objects and background clutters. Our “unreliability and
reliability check” criterion can not only enhance the efficiency
but also control the quality of re-detection. Only using color
or HOG information to estimate the reliability of the target is
not robust enough and the re-detected objects may contaminate
the detector further. Significant promotion can be achieved by
combining both HOG and color features for re-detection.

Table II shows the influence of the number of ROI in
re-detection process. The involvement of multiple searching
areas in re-detection means the trained detector is re-utilized
multiple times, which will reduce the efficiency. However,
it is interesting that even only single ROI is adopted in
re-detection still achieves an obvious improvement compared
to no re-detection, which is attributed to the effectiveness of
sparse representation based method for ROI selection and our
reliability estimation for output controlling. To obtain high
efficiency, we choose 5 searching areas although more ROIs
in re-detection provide further improvement.

C. Integration Into Different DCF Trackers

To cope with the limited size of ROI in DCF based trackers,
an intuitive idea is to enlarge the searching area. In Table III,
the ROIs of KCF [4], SAMF [10] and Staple [23] are set to
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TABLE III

THE TRACKING ACCURACY OF DIFFERENT DCF BASED TRACKERS
WITH DIFFERENT SETTINGS OF ROI SIZE. WE TAKE THE

EVALUATION METRIC OF OVERLAP PRECISION (OP) (%)
AT AN OVERLAP THRESHOLD 0.5 AND REPORT RESULTS

ON THE OTB-2015 DATASET [48]. THE PERFORMANCES
OF THE STANDARD ALGORITHMS ARE

HIGHLIGHTED BY UNDERLINE

Fig. 5. Overlap success plots of different DCF based trackers when the
locations of ROI are obtained from the groundtruth, the standard method
(target position in the previous frame) and standard method with small
perturbation error. For the Staple tracker, the above three settings are denoted
by Staple groundtruth, Staple standard, and Staple error, respectively. Other
trackers with those settings are denoted in a similar way. The legend illustrates
the area-under-curve (AUC) score for each tracker.

different sizes. From the results, we can observe that ROI of a
suitable size performs the best and a too large ROI will reduce
the discriminative power of the tracker and results in worse
performance. In other words, it is useless to simply enlarge the
search area on the image plane. Besides, another experiment
is conducted to study the impact of the ROI position (Fig. 5).
In this experiment, the positions of ROIs are obtained from
the groundtruth, the standard method (target position in the
previous frame) and standard method with minor random per-
turbation (5 pixels in our experiment), respectively. As shown
in Fig. 5, impressive performance is achieved by using the
optimal ROI obtained from groundtruth while by perturbing
its location with a minor drift error, the performance drops
significantly, which illustrates the importance of the ROI
position accuracy. These observations justify the practicability
of improving the performance of DCF based trackers through
selecting the best tracking result from multiple searching areas.

As discussed above, many DCF based trackers have much
room for improvement by selecting a better ROI. We validate
our re-detection framework by integrating it into 8 different
trackers: MOSSE [21], CSK [36], KCF [4], SAMF [10],
Staple [23], LCT [18], HCF [42] and improved HCF with
scale estimation (denoted as “HCFs”). Although HOG and
color features are used for reliability estimation and adaptive
update, we do not integrate these features to the baseline
trackers and just make full use of them for re-detection. From
Table IV and Fig. 6, we can observe that after incorporating

TABLE IV

A COMPARISON OF DIFFERENT TRACKERS AND THEIR COMBINATION
WITH OUR RE-DETECTION FRAMEWORK (LABELLED

WITH “+”) ON THE OTB-2015 DATASET

our re-detection framework, the basic DCF based tracker
MOSSE gains a significant improvement (10.2% in DP and
9.1% in OP) and state-of-the-art tracker Staple still obtains an
obvious improvement (4.9% in DP and 5.9% in OP). Although
DCF with deep features (e.g., HCF) shows better robustness
in occlusion and deformation compared to the hand-crafted
features based trackers, it still suffers from restricted search
range, imperfect ROI and corrupted training samples, and our
framework improves HCF further (1.5% in DP and 3.1% in
OP). Specially, HCF combined with scale estimation and our
re-detection framework has shown state-of-the-art performance
(67.0% AUC in OTB-2015).

LCT is one of the latest long-term tracking algorithms
equipped with re-detection. However, it is more effective by
simply re-utilizing its baseline detector for re-detection using
our framework than its additional re-detector (Fig. 6).

D. Evaluation on OTB-2015

After self-evaluation, a comparison with other state-of-the-
art trackers on OTB-2015 [48] and Temple-Color [49] datasets
is shown in Table V. In the OTB-2015 dataset, HCF [42]
achieves the best result in mean DP and CLE while our
algorithm performs the best in mean OP as well as area-under-
curve (AUC) of overlap precision plot (Fig. 7).

Currently, several deep tracking methods [54]–[57] have
been developed to utilize features learned from CNN.
HCF [42] adopts the VGG-Net-19 [41] trained on Ima-
geNet for feature extraction and SiamFc [51] detects object
through a pre-trained fully-convolutional siamese network.
However, the feature learning process using CNN is a bit
time-consuming. Deep features usually capture more semantic
information with less spatial resolutions. Hand-crafted features
are typically used to capture low-level information (e.g., color,
shape, texture) which is more suitable for predicting the state
of the target in re-detection. Our algorithm just extracts hand-
crafted appearance features frame-by-frame and decreases the
impact of corrupted samples through a re-detection scheme
with low time cost.

E. Evaluation on Temple-Color

In Temple-Color dataset [49], our algorithm outperforms
the state-of-the-art tracking algorithms in various evaluation
criterion (Table V and Fig. 7). Among the compared tracking
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Fig. 6. Overlap success plots of DCF based trackers and their enhanced versions using our re-detection framework over OTB-2015 benchmark. The legend
illustrates the area-under-curve (AUC) score for each tracker.

TABLE V

A COMPARISON OF OUR APPROACH, USING MEAN DISTANCE PRECISION (DP) (%) AT A THRESHOLD OF 20 PIXELS, OVERLAP PRECISION (OP) (%)
AT AN OVERLAP THRESHOLD 0.5 AS WELL AS CENTER LOCATION ERROR (CLE)(PIXELS), WITH THE STATE-OF-THE-ART TRACKERS ON THE

OTB-2015 AND TEMPLE-COLOR DATASETS. THE FIRST AND SECOND HIGHEST VALUES ARE HIGHLIGHTED BY BOLD AND UNDERLINE

Fig. 7. Overlap success plots over OTB-2015 benchmark (left) with 100 videos and Temple-Color benchmark (right) with 128 color videos. The legend
illustrates the area-under-curve (AUC) score for each tracker. Our algorithm improves the baseline (Staple [23]) obviously and maintains high speed.

methods, Staple [23], SiamFc [51] and SRDCF [22] provide
the best results with AUC scores of 50.9%, 50.1% and 49.9%,
respectively. Our algorithm achieves the best result with an
AUC score of 55.1%. One reason of our excellent performance
is the utilization of color features in both detection and
re-detection models, which enhances the robustness in color
videos greatly. Another reason is about 30% of the videos in

OTB-2015 dataset are gray while all the 128 videos in Temple-
Color benchmark are color with much more challenging
factors.

F. Evaluation on VOT-2015

The VOT-2015 [52] benchmark provides an evaluation kit
and the dataset consists of 60 challenging sequences which
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Fig. 8. The AR rank plots and AR score plots generated by sequence pooling (left) and expected average overlap graph (right) with trackers ranked from
right to left. Our proposed method performs favorably against the state-of-the-art trackers even without the re-detection module, which can be attributed to
the effective combination of different features and adaptive update strategy.

Fig. 9. Attribute-based evaluation on OTB-2015 benchmark. Success plots are shown eleven challenging factors. The title text indicate the name of the
attribute and the number of videos associated with it. The legend illustrates the area-under-curve (AUC) score for each tracker. Our algorithm performs
favorably against the state-of-the-art trackers, especially in out-of-view, background clutter, occlusion and deformation. We also put the overall performance
here (the last one) for comparison convenience facing a single challenge and their combination.

are manually selected. The tracking performance in the VOT-
2015 is evaluated on two independent metrics: accuracy and
robustness. The tracker will be re-initialized to the correct
position to continue tracking when tracking failure occurs.

The accuracy is measured through the average of the overlap
ratios. The robustness is measured in terms of the number
of failures. In VOT-2015, a new measure, i.e., the expected
average overlap (EAO), is proposed for ranking trackers,
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Fig. 10. Qualitative evaluation of our proposed algorithm, SiamFc [51], SRDCF [22], Staple [23], LCT [18] and MEEM [30] on 14 challenging videos.
From left to right and top to down are Bolt2, CarScale, DragonBaby, Girl2, H uman9, Shaking, Singer2, Skating1, Airport-ce, Carchasing-ce1,
Sur f -ce3, Spiderman-ce, K ite-ce1 and Railwaystation-ce, respectively.

which combines the raw values of per-frame accuracies and
failures in a principled manner. VOT is a benchmark for short-
term tracking which does not allow successful re-detection
after target is lost. For fair comparison, we tested our method
in VOT-2015 without re-detection module.

From the pooled AR ranks shown in Fig. 8, we can observe
that our tracker is among the top performers in terms of both
accuracy and robustness. The toppest two trackers, MDNet
[58] and DeepSRDCF [43] obtain high robustness as well as
accuracy by utilizing CNN features.

It should be noted that VOT challenge is not devoted to
long-term tracking tasks with heavy occlusion and out-of-
view. However, the results reveal that our method performs
comparably to other state-of-the-art trackers.

G. Evaluation in Attributed Videos

We further analyze some common challenging factors in
long-term tracking. All the 100 videos in OTB-2015 [48] are
annotated with 11 different attributes, namely: background
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Fig. 11. Frame-by-frame comparison of center location errors (in pixel) on sixteen challenging videos. Our proposed algorithm is able to track targets
accurately and stably. Especially in the video Girl2, Airport-ce, Spiderman-ce and Railwaystation-ce, almost all the trackers fail to track the target due
to heavy occlusion or out-of-view while ours re-detects the target after a short-time failure.

clutter, deformation, out-of-plane rotation, scale variation,
occlusion, illumination variation, motion blur, in-plane rota-
tion, out-of-view, fast motion and low resolution.

From Fig. 9 we can observe that our tracker is adept at
handling occlusion, out-of-view and deformation. In case of
out-of-view, our proposed method provides a gain of 6.8%
compared to the second best tracker SiamFc [51] and 7.0%
compared to the baseline tracker Staple [23]. In case of occlu-
sion, ours provides a gain of 4.3% compared to the second best
tracker SRDCF [22] and 5.6% compared to the baseline tracker
Staple. Many tracking-by-detection approaches fail to handle
occlusion and deformation effectively due to the lack of a
scheme to avoid poor updates. Some trackers have re-detection
ability to some degree [18], [29], [30]. However, our proposed
method outperforms them due to the combination of multiple
features as well as the incorporation of the reliability estima-
tion to search a reliable re-detected target to correct itself.

H. Qualitative Evaluation
Fig. 10 shows some comparisons of our algorithm and

other five state-of-the-art trackers: SiamFc [51], SRDCF [22],
Staple [23], LCT [18] and MEEM [30] on 14 challenging
sequences, of which the top 8 videos are from OTB-2015 and
the rest are from Temple-Color.

The SiamFC tracker performs well in handling occlusion
and deformation due to the robustness of the pre-trained
network. But it is less effective to distinguish target from
similar objects or background clutters (Singer2 and Bolt2).
The SRDCF tracker is based on CF with a novel boundary
effects penalization method, which performs well in fast
motion and scale variation but performs poorly in rotation

(Shaking and Sur f -ce3) and out-of-view (DragonBaby).
Staple achieves high robustness in deformation and color
changes due to the robust representation of color features
while fails to handle heavy occlusions (Girl2, Spiderman-ce
and Railwaystation-ce). LCT is a long-term tracker which
depends on a random fern classifier to re-detect the object.
However, it is not effective enough to handle heavy occlusions
and fast motion (Bolt2). MEEM is able to handle rotation
and deformation to some degree by re-utilizing reliable results
using entropy minimization while fails to handle scale changes
(Carscale) and heavy occlusion.

Finally, in Fig. 11, we compare the center location errors
(Euclidean distance between groundtruth and the predicted
target position) frame-by-frame on the 14 challenging videos
mentioned above, which demonstrates the re-detection capa-
bility of our method. In the video Girl2, at about the
110-th frame, the girl (target) is fully occluded by a pedestrian
(Fig. 10) and almost all the methods produce large center
location errors (Fig. 11) while our method still accurately
re-detects the target after a short-time failure. Similarly,
at about the 70-th frame in the video Air port-ce, 300-th
frame in Spiderman-ce and 150-th frame in Carchasing-
ce1, full occlusion or out-of-view occurs to the targets and
maintains for a short period (from 5 to 20 frames), and most
trackers fail to locate the target when facing these situations
and result in enormous center location errors. Compared to
our baseline Staple, the re-detection framework improves its
robustness obviously, especially in the challenging scenes with
heavy occlusion and out-of-view.

There exist a few cases where our tracker fails to re-detect
the object (Fig. 12). In the video Face-ce, the occlusions have
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Fig. 12. Failure cases of our approach (Motor Rolling, Face-ce and
Bike-ce2). Our tracking results are shown in yellow and the groundtruth
boxes in red.

similar hand-crafted features with the object we aim to detect
which mislead our re-detector. Although our tracker tries to
identify a more reliable re-detected target than the detected
one, while in case of occlusions have similar features with
the target, our proposed method still struggles in re-detection.
In the video Motor Rolling and Bike-ce2, targets undergo
heavy deformation as well as fast motion, our approach fails
to handle them.

V. CONCLUSION

In this paper, a real-time long-term tracking framework is
proposed. Our approach is equipped with both tracking-by-
detection and re-detection modules to handle heavy occlusion,
out-of-view and significant appearance changes in long-term
tracking. Through a re-detection scheme combined of HOG
and color features, our tracker updates detection model adap-
tively to alleviate drift and false accumulation effectively.
The “unreliability and reliability check” criterion enables
our tracker to switch the suitable solution between detection
and re-detection models. Our generic re-detection framework
can be integrated into many DCF based trackers to realize
consistent performance improvement. The performance of our
tracker is evaluated extensively on the OTB-2015, Temple-
Color and VOT-2015 datasets. Our algorithm performs favor-
ably against state-of-the-art methods especially in color videos.
Given its accuracy, robustness and efficiency, our method
works as a promising alternative for long-term tracking tasks
where there exist much more challenging factors.
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